Cargando…
Active deep learning from a noisy teacher for semi-supervised 3D image segmentation: Application to COVID-19 pneumonia infection in CT
Supervised deep learning has become a standard approach to solving medical image segmentation tasks. However, serious difficulties in attaining pixel-level annotations for sufficiently large volumetric datasets in real-life applications have highlighted the critical need for alternative approaches,...
Autores principales: | Hussain, Mohammad Arafat, Mirikharaji, Zahra, Momeny, Mohammad, Marhamati, Mahmoud, Neshat, Ali Asghar, Garbi, Rafeef, Hamarneh, Ghassan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540707/ https://www.ncbi.nlm.nih.gov/pubmed/36257092 http://dx.doi.org/10.1016/j.compmedimag.2022.102127 |
Ejemplares similares
-
Learning-to-augment strategy using noisy and denoised data: Improving generalizability of deep CNN for the detection of COVID-19 in X-ray images
por: Momeny, Mohammad, et al.
Publicado: (2021) -
Learning-to-augment incorporated noise-robust deep CNN for detection of COVID-19 in noisy X-ray images
por: Akbarimajd, Adel, et al.
Publicado: (2022) -
DS6, Deformation-Aware Semi-Supervised Learning: Application to Small Vessel Segmentation with Noisy Training Data
por: Chatterjee, Soumick, et al.
Publicado: (2022) -
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
por: Grubišić, Ivan, et al.
Publicado: (2023) -
Lidar–Camera Semi-Supervised Learning for Semantic Segmentation
por: Caltagirone, Luca, et al.
Publicado: (2021)