Cargando…
Day‐to‐Day Variability of the Semidiurnal Tide in the F‐Region Ionosphere During the January 2021 SSW From COSMIC‐2 and ICON
The semidiurnal tidal spectrum in the F‐region ionosphere obtained from hourly COSMIC‐2 Global Ionospheric Specification (GIS) data assimilation is greatly (>50%) enhanced during the January 2021 Sudden Stratospheric Warming (SSW). Moreover, the semidiurnal migrating tidal response in topside ele...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541047/ https://www.ncbi.nlm.nih.gov/pubmed/36245895 http://dx.doi.org/10.1029/2022GL100369 |
Sumario: | The semidiurnal tidal spectrum in the F‐region ionosphere obtained from hourly COSMIC‐2 Global Ionospheric Specification (GIS) data assimilation is greatly (>50%) enhanced during the January 2021 Sudden Stratospheric Warming (SSW). Moreover, the semidiurnal migrating tidal response in topside electron densities closely follows the day‐to‐day changes of the 10 hPa, 60°N zonal wind from MERRA‐2 during the SSW. The response is similar in the northern and southern crests of the Equatorial Ionization Anomaly (EIA) but persists toward higher magnetic latitudes and the EIA trough. A slight phase shift toward earlier local times is consistent with theoretical expectations of an E‐region dynamo driving and agrees with semidiurnal tidal diagnostics of MIGHTI/ICON zonal winds at 105 km. COSMIC‐2 GIS are the first data set to resolve the tidal weather of the ionosphere on a day‐to‐day basis and, therefore, provide a new perspective on space weather variability driven by lower and middle atmosphere dynamics. |
---|