Cargando…

Machine Learning Guided Discovery of Non‐Hemolytic Membrane Disruptive Anticancer Peptides

Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α‐helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and n...

Descripción completa

Detalles Bibliográficos
Autores principales: Zakharova, Elena, Orsi, Markus, Capecchi, Alice, Reymond, Jean‐Louis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541320/
https://www.ncbi.nlm.nih.gov/pubmed/35880810
http://dx.doi.org/10.1002/cmdc.202200291
Descripción
Sumario:Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α‐helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non‐hemolytic from hemolytic AMPs and ACPs to discover new non‐hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty‐three peptides resulted in eleven active ACPs, four of which were non‐hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non‐hemolytic ACPs.