Cargando…
Machine Learning Guided Discovery of Non‐Hemolytic Membrane Disruptive Anticancer Peptides
Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α‐helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and n...
Autores principales: | Zakharova, Elena, Orsi, Markus, Capecchi, Alice, Reymond, Jean‐Louis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541320/ https://www.ncbi.nlm.nih.gov/pubmed/35880810 http://dx.doi.org/10.1002/cmdc.202200291 |
Ejemplares similares
-
Machine learning designs non-hemolytic antimicrobial peptides
por: Capecchi, Alice, et al.
Publicado: (2021) -
Machine learning-guided discovery and design of non-hemolytic peptides
por: Plisson, Fabien, et al.
Publicado: (2020) -
Assigning the Origin of Microbial Natural Products by Chemical Space Map and Machine Learning
por: Capecchi, Alice, et al.
Publicado: (2020) -
Classifying natural products from plants, fungi or bacteria using the COCONUT database and machine learning
por: Capecchi, Alice, et al.
Publicado: (2021) -
An intrinsically disordered antimicrobial peptide dendrimer from stereorandomized virtual screening
por: Cai, Xingguang, et al.
Publicado: (2022)