Cargando…
Comparison of preprocessing techniques to reduce nontissue-related variations in hyperspectral reflectance imaging
SIGNIFICANCE: Hyperspectral reflectance imaging can be used in medicine to identify tissue types, such as tumor tissue. Tissue classification algorithms are developed based on, e.g., machine learning or principle component analysis. For the development of these algorithms, data are generally preproc...
Autores principales: | Witteveen, Mark, Sterenborg, Henricus J. C. M., van Leeuwen, Ton G., Aalders, Maurice C. G., Ruers, Theo J. M., Post, Anouk L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541333/ https://www.ncbi.nlm.nih.gov/pubmed/36207772 http://dx.doi.org/10.1117/1.JBO.27.10.106003 |
Ejemplares similares
-
Tissue Classification of Breast Cancer by Hyperspectral Unmixing
por: Jong, Lynn-Jade S., et al.
Publicado: (2023) -
Experimental validation of a recently developed model for single-fiber reflectance spectroscopy
por: Post, Anouk L., et al.
Publicado: (2021) -
Subdiffuse scattering model for single fiber reflectance spectroscopy
por: Post, Anouk L., et al.
Publicado: (2020) -
Refractive index measurement using single fiber reflectance spectroscopy
por: Zhang, Xu U., et al.
Publicado: (2019) -
Model for the diffuse reflectance in spatial frequency domain imaging
por: Post, Anouk L., et al.
Publicado: (2023)