Cargando…

Transmembranous and enchondral osteogenesis in transplants of rat limb buds cultivated in serum‐ and protein‐free culture medium

Cartilage differentiates in rat limb buds cultivated in a chemically defined protein‐free medium in the same manner as in the richer serum‐supplemented medium. We aimed to investigate the remaining differentiation potential of pre‐cultivated limb buds by subsequent transplantation in vivo. Rat front...

Descripción completa

Detalles Bibliográficos
Autores principales: Himelreich Perić, Marta, Mužić‐Radović, Vedrana, Marić, Tihana, Bulić‐Jakuš, Floriana, Jurić‐Lekić, Gordana, Takahashi, Marta, Sinčić, Nino, Ježek, Davor, Katušić‐Bojanac, Ana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541464/
https://www.ncbi.nlm.nih.gov/pubmed/35815632
http://dx.doi.org/10.1111/ahe.12835
Descripción
Sumario:Cartilage differentiates in rat limb buds cultivated in a chemically defined protein‐free medium in the same manner as in the richer serum‐supplemented medium. We aimed to investigate the remaining differentiation potential of pre‐cultivated limb buds by subsequent transplantation in vivo. Rat front (FLBs) and hind‐limb buds (HLBs) were isolated from Fischer rat dams at the 14th gestation day (GD 14) and cultivated at the air‐liquid interface in Eagle's Minimum Essential Medium (MEM) alone; with 5 μM of 5‐azacytidine (5azaC) or with rat serum (1:1). Overall growth was measured seven times during the culture by an ocular micrometre. After 14 days, explants were transplanted under the kidney capsule of adult males. Growth of limb buds was significantly lower in all limb buds cultivated in MEM than in those cultivated with serum. In MEM with 5azaC, growth of LBs was significantly lower only on day 3 of culture. Afterwards, it was higher throughout the culture period, although a statistically significant difference was assessed only for HLBs. In transplants, mixed structures developed with the differentiated transmembranous bone, cartilage with enchondral ossification, bone‐marrow, sebaceous gland, and hair that have never been found in vitro. Nerves differentiated only in transplants precultivated in the serum‐supplemented medium. We conclude that pre‐cultivation of LBs in a chemically defined protein‐free medium does not restrict osteogenesis and formation of epidermal appendages but is restrictive for neural tissue. These results are important for understanding limb development and regenerative medicine strategies.