Cargando…
Identification and characterization of long noncoding RNAs involved in the aluminum stress response in Medicago truncatula via genome-wide analysis
Numerous studies have shown that plant long noncoding RNAs (lncRNAs) play an important regulatory role in the plant response to environmental stress. However, there are no reports on lncRNAs regulating and enhancing aluminum (Al) stress tolerance in legumes. This study analyzed the role of lncRNAs i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541535/ https://www.ncbi.nlm.nih.gov/pubmed/36212300 http://dx.doi.org/10.3389/fpls.2022.1017869 |
_version_ | 1784803947032084480 |
---|---|
author | Gui, Qihui Yang, Zhengyu Chen, Chao Yang, Feng Wang, Song Dong, Rui |
author_facet | Gui, Qihui Yang, Zhengyu Chen, Chao Yang, Feng Wang, Song Dong, Rui |
author_sort | Gui, Qihui |
collection | PubMed |
description | Numerous studies have shown that plant long noncoding RNAs (lncRNAs) play an important regulatory role in the plant response to environmental stress. However, there are no reports on lncRNAs regulating and enhancing aluminum (Al) stress tolerance in legumes. This study analyzed the role of lncRNAs in response to Al stress in the legume model plant Medicago truncatula. A total of 219.49 Gb clean data were generated: 3,284 lncRNA genes were identified, of which 515 were differentially expressed, and 1,254 new genes were functionally annotated through database alignment. We further predicted and classified putative targets of these lncRNAs and found that they were enriched in biological processes and metabolic pathways such as plant hormone signal transduction, cell wall modification and the tricarboxylic acid (TCA) cycle. Finally, we characterized the functions of 2 Al-activated-malate-transporter-related lncRNAs in yeast. The recombinant plasmids of MSTRG.12506.5 and MSTRG.34338.20 were transformed into yeast, and these yeast exhibited better growth than those carrying empty vectors on medium supplemented with 10 μM AlCl(3) and showed that they have biological functions affording Al stress tolerance. These findings suggest that lncRNAs are involved in regulating plant responses to Al stress. Our findings help to understand the role of lncRNAs in the response to Al stress in legumes and provide candidate lncRNAs for further studies. |
format | Online Article Text |
id | pubmed-9541535 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95415352022-10-08 Identification and characterization of long noncoding RNAs involved in the aluminum stress response in Medicago truncatula via genome-wide analysis Gui, Qihui Yang, Zhengyu Chen, Chao Yang, Feng Wang, Song Dong, Rui Front Plant Sci Plant Science Numerous studies have shown that plant long noncoding RNAs (lncRNAs) play an important regulatory role in the plant response to environmental stress. However, there are no reports on lncRNAs regulating and enhancing aluminum (Al) stress tolerance in legumes. This study analyzed the role of lncRNAs in response to Al stress in the legume model plant Medicago truncatula. A total of 219.49 Gb clean data were generated: 3,284 lncRNA genes were identified, of which 515 were differentially expressed, and 1,254 new genes were functionally annotated through database alignment. We further predicted and classified putative targets of these lncRNAs and found that they were enriched in biological processes and metabolic pathways such as plant hormone signal transduction, cell wall modification and the tricarboxylic acid (TCA) cycle. Finally, we characterized the functions of 2 Al-activated-malate-transporter-related lncRNAs in yeast. The recombinant plasmids of MSTRG.12506.5 and MSTRG.34338.20 were transformed into yeast, and these yeast exhibited better growth than those carrying empty vectors on medium supplemented with 10 μM AlCl(3) and showed that they have biological functions affording Al stress tolerance. These findings suggest that lncRNAs are involved in regulating plant responses to Al stress. Our findings help to understand the role of lncRNAs in the response to Al stress in legumes and provide candidate lncRNAs for further studies. Frontiers Media S.A. 2022-09-23 /pmc/articles/PMC9541535/ /pubmed/36212300 http://dx.doi.org/10.3389/fpls.2022.1017869 Text en Copyright © 2022 Gui, Yang, Chen, Yang, Wang and Dong. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Gui, Qihui Yang, Zhengyu Chen, Chao Yang, Feng Wang, Song Dong, Rui Identification and characterization of long noncoding RNAs involved in the aluminum stress response in Medicago truncatula via genome-wide analysis |
title | Identification and characterization of long noncoding RNAs involved in the aluminum stress response in Medicago truncatula via genome-wide analysis |
title_full | Identification and characterization of long noncoding RNAs involved in the aluminum stress response in Medicago truncatula via genome-wide analysis |
title_fullStr | Identification and characterization of long noncoding RNAs involved in the aluminum stress response in Medicago truncatula via genome-wide analysis |
title_full_unstemmed | Identification and characterization of long noncoding RNAs involved in the aluminum stress response in Medicago truncatula via genome-wide analysis |
title_short | Identification and characterization of long noncoding RNAs involved in the aluminum stress response in Medicago truncatula via genome-wide analysis |
title_sort | identification and characterization of long noncoding rnas involved in the aluminum stress response in medicago truncatula via genome-wide analysis |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541535/ https://www.ncbi.nlm.nih.gov/pubmed/36212300 http://dx.doi.org/10.3389/fpls.2022.1017869 |
work_keys_str_mv | AT guiqihui identificationandcharacterizationoflongnoncodingrnasinvolvedinthealuminumstressresponseinmedicagotruncatulaviagenomewideanalysis AT yangzhengyu identificationandcharacterizationoflongnoncodingrnasinvolvedinthealuminumstressresponseinmedicagotruncatulaviagenomewideanalysis AT chenchao identificationandcharacterizationoflongnoncodingrnasinvolvedinthealuminumstressresponseinmedicagotruncatulaviagenomewideanalysis AT yangfeng identificationandcharacterizationoflongnoncodingrnasinvolvedinthealuminumstressresponseinmedicagotruncatulaviagenomewideanalysis AT wangsong identificationandcharacterizationoflongnoncodingrnasinvolvedinthealuminumstressresponseinmedicagotruncatulaviagenomewideanalysis AT dongrui identificationandcharacterizationoflongnoncodingrnasinvolvedinthealuminumstressresponseinmedicagotruncatulaviagenomewideanalysis |