Cargando…
Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models
Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541604/ https://www.ncbi.nlm.nih.gov/pubmed/36245669 http://dx.doi.org/10.1029/2022MS003130 |
_version_ | 1784803961735217152 |
---|---|
author | Behrens, Gunnar Beucler, Tom Gentine, Pierre Iglesias‐Suarez, Fernando Pritchard, Michael Eyring, Veronika |
author_facet | Behrens, Gunnar Beucler, Tom Gentine, Pierre Iglesias‐Suarez, Fernando Pritchard, Michael Eyring, Veronika |
author_sort | Behrens, Gunnar |
collection | PubMed |
description | Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non‐linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed‐forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus‐like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large‐scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub‐grid‐scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties. |
format | Online Article Text |
id | pubmed-9541604 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95416042022-10-14 Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models Behrens, Gunnar Beucler, Tom Gentine, Pierre Iglesias‐Suarez, Fernando Pritchard, Michael Eyring, Veronika J Adv Model Earth Syst Research Article Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non‐linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed‐forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus‐like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large‐scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub‐grid‐scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties. John Wiley and Sons Inc. 2022-08-13 2022-08 /pmc/articles/PMC9541604/ /pubmed/36245669 http://dx.doi.org/10.1029/2022MS003130 Text en © 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Article Behrens, Gunnar Beucler, Tom Gentine, Pierre Iglesias‐Suarez, Fernando Pritchard, Michael Eyring, Veronika Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models |
title | Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models |
title_full | Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models |
title_fullStr | Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models |
title_full_unstemmed | Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models |
title_short | Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models |
title_sort | non‐linear dimensionality reduction with a variational encoder decoder to understand convective processes in climate models |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541604/ https://www.ncbi.nlm.nih.gov/pubmed/36245669 http://dx.doi.org/10.1029/2022MS003130 |
work_keys_str_mv | AT behrensgunnar nonlineardimensionalityreductionwithavariationalencoderdecodertounderstandconvectiveprocessesinclimatemodels AT beuclertom nonlineardimensionalityreductionwithavariationalencoderdecodertounderstandconvectiveprocessesinclimatemodels AT gentinepierre nonlineardimensionalityreductionwithavariationalencoderdecodertounderstandconvectiveprocessesinclimatemodels AT iglesiassuarezfernando nonlineardimensionalityreductionwithavariationalencoderdecodertounderstandconvectiveprocessesinclimatemodels AT pritchardmichael nonlineardimensionalityreductionwithavariationalencoderdecodertounderstandconvectiveprocessesinclimatemodels AT eyringveronika nonlineardimensionalityreductionwithavariationalencoderdecodertounderstandconvectiveprocessesinclimatemodels |