Cargando…
Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models
Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we...
Autores principales: | Behrens, Gunnar, Beucler, Tom, Gentine, Pierre, Iglesias‐Suarez, Fernando, Pritchard, Michael, Eyring, Veronika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541604/ https://www.ncbi.nlm.nih.gov/pubmed/36245669 http://dx.doi.org/10.1029/2022MS003130 |
Ejemplares similares
-
Deep Learning Based Cloud Cover Parameterization for ICON
por: Grundner, Arthur, et al.
Publicado: (2022) -
Deep learning to represent subgrid processes in climate models
por: Rasp, Stephan, et al.
Publicado: (2018) -
Implicit learning of convective organization explains precipitation stochasticity
por: Shamekh, Sara, et al.
Publicado: (2023) -
Causal networks for climate model evaluation and constrained projections
por: Nowack, Peer, et al.
Publicado: (2020) -
Encoding and Decoding Models in Cognitive Electrophysiology
por: Holdgraf, Christopher R., et al.
Publicado: (2017)