Cargando…

A genome‐wide association study of the occurrence of genetic variations in Edwardsiella piscicida, Vibrio harveyi, and Streptococcus parauberis under stressed environments

Bacterial mutation and genetic diversity in aquaculture have led to increasing phenotypic variances, which can weaken or invalidate strategies for controlling diseases. However, few studies have monitored the degree of mutation in fish bacterial pathogens caused by environmental pressure within a sh...

Descripción completa

Detalles Bibliográficos
Autor principal: Roh, HyeongJin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541752/
https://www.ncbi.nlm.nih.gov/pubmed/35735095
http://dx.doi.org/10.1111/jfd.13668
Descripción
Sumario:Bacterial mutation and genetic diversity in aquaculture have led to increasing phenotypic variances, which can weaken or invalidate strategies for controlling diseases. However, few studies have monitored the degree of mutation in fish bacterial pathogens caused by environmental pressure within a short period. In this study, transcriptomic sequences from Edwardsiella piscicida, Vibrio harveyi and Streptococcus parauberis under stressed environments were used for investigating the emergence of variants. In detail, a sub‐inhibitory concentration of formalin and phenol for E. piscicida, sea water at 30°C for V. harveyi and flounder serum for S. parauberis were used as stressed environments, and significant single‐nucleotide polymorphisms (SNPs) and/or mutation sites were investigated after culture in the ordinary liquid media (control) and the stressed environment through a genome‐wide association study. As results, several SNPs or mutations during incubation were observed under different environments in E. piscicida and/or V. harveyi in the genes relevant to flagella, fimbria type 3 secretion systems, and outer and inner membranes that have been directly exposed to external environments. In particular, given that flagella and fimbriae are considered important factors in differentiating the serotypes in some bacterial pathogens, it can be speculated that different environmental pressures are the source of phenotypic or serotypic differentiation from the same origin. On the other hands, S. parauberis did not exhibit notable changes for 4 h when inoculated in the serum from olive flounder. The results presented in this study provide examples of possible molecular evolution in pathogens relevant to the aquaculture industry as a response to different environmental pressure.