Cargando…
Machine learning for improving high‐dimensional proxy confounder adjustment in healthcare database studies: An overview of the current literature
PURPOSE: Supplementing investigator‐specified variables with large numbers of empirically identified features that collectively serve as ‘proxies’ for unspecified or unmeasured factors can often improve confounding control in studies utilizing administrative healthcare databases. Consequently, there...
Autores principales: | Wyss, Richard, Yanover, Chen, El‐Hay, Tal, Bennett, Dimitri, Platt, Robert W., Zullo, Andrew R., Sari, Grammati, Wen, Xuerong, Ye, Yizhou, Yuan, Hongbo, Gokhale, Mugdha, Patorno, Elisabetta, Lin, Kueiyu Joshua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541861/ https://www.ncbi.nlm.nih.gov/pubmed/35729705 http://dx.doi.org/10.1002/pds.5500 |
Ejemplares similares
-
ISPE‐Endorsed Guidance in Using Electronic Health Records for Comparative Effectiveness Research in COVID‐19: Opportunities and Trade‐Offs
por: Sarri, Grammati, et al.
Publicado: (2022) -
Framework for the synthesis of non-randomised studies and randomised controlled trials: a guidance on conducting a systematic review and meta-analysis for healthcare decision making
por: Sarri, Grammati, et al.
Publicado: (2022) -
How well can we assess the validity of non-randomised studies of medications? A systematic review of assessment tools
por: D'Andrea, Elvira, et al.
Publicado: (2021) -
Bias Implications of Outcome Misclassification in Observational Studies Evaluating Association Between Treatments and All‐Cause or Cardiovascular Mortality Using Administrative Claims
por: Desai, Rishi J., et al.
Publicado: (2020) -
Adjustment for unmeasured confounding through informative priors for the confounder-outcome relation
por: Groenwold, Rolf H. H., et al.
Publicado: (2018)