Cargando…
Anatomical Partition‐Based Deep Learning: An Automatic Nasopharyngeal MRI Recognition Scheme
BACKGROUND: Training deep learning (DL) models to automatically recognize diseases in nasopharyngeal MRI is a challenging task, and optimizing the performance of DL models is difficult. PURPOSE: To develop a method of training anatomical partition‐based DL model which integrates knowledge of clinica...
Autores principales: | Li, Song, Hua, Hong‐Li, Li, Fen, Kong, Yong‐Gang, Zhu, Zhi‐Ling, Li, Sheng‐Lan, Chen, Xi‐Xiang, Deng, Yu‐Qin, Tao, Ze‐Zhang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541866/ https://www.ncbi.nlm.nih.gov/pubmed/35157782 http://dx.doi.org/10.1002/jmri.28112 |
Ejemplares similares
-
Automatic speech recognition: a deep learning approach
por: Yu, Dong, et al.
Publicado: (2015) -
A Comprehensive Review on Radiomics and Deep Learning for Nasopharyngeal Carcinoma Imaging
por: Li, Song, et al.
Publicado: (2021) -
Predicting prognosis of nasopharyngeal carcinoma based on deep learning: peritumoral region should be valued
por: Li, Song, et al.
Publicado: (2023) -
Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates
por: Frandsen, Paul B, et al.
Publicado: (2015) -
Deep learning for the prediction of residual tumor after radiotherapy and treatment decision-making in patients with nasopharyngeal carcinoma based on magnetic resonance imaging
por: Hua, Hong-Li, et al.
Publicado: (2023)