Cargando…
Calibrating rhythmic stimulation parameters to individual electroencephalography markers: The consistency of individual alpha frequency in practical lab settings
Rhythmic stimulation can be applied to modulate neuronal oscillations. Such ‘entrainment’ is optimized when stimulation frequency is individually calibrated based on magneto/encephalography markers. It remains unknown how consistent such individual markers are across days/sessions, within a session,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541964/ https://www.ncbi.nlm.nih.gov/pubmed/34363269 http://dx.doi.org/10.1111/ejn.15418 |
_version_ | 1784804044238225408 |
---|---|
author | Janssens, Shanice E. W. Sack, Alexander T. Ten Oever, Sanne de Graaf, Tom A. |
author_facet | Janssens, Shanice E. W. Sack, Alexander T. Ten Oever, Sanne de Graaf, Tom A. |
author_sort | Janssens, Shanice E. W. |
collection | PubMed |
description | Rhythmic stimulation can be applied to modulate neuronal oscillations. Such ‘entrainment’ is optimized when stimulation frequency is individually calibrated based on magneto/encephalography markers. It remains unknown how consistent such individual markers are across days/sessions, within a session, or across cognitive states, hemispheres and estimation methods, especially in a realistic, practical, lab setting. We here estimated individual alpha frequency (IAF) repeatedly from short electroencephalography (EEG) measurements at rest or during an attention task (cognitive state), using single parieto‐occipital electrodes in 24 participants on 4 days (between‐sessions), with multiple measurements over an hour on 1 day (within‐session). First, we introduce an algorithm to automatically reject power spectra without a sufficiently clear peak to ensure unbiased IAF estimations. Then we estimated IAF via the traditional ‘maximum’ method and a ‘Gaussian fit’ method. IAF was reliable within‐ and between‐sessions for both cognitive states and hemispheres, though task‐IAF estimates tended to be more variable. Overall, the ‘Gaussian fit’ method was more reliable than the ‘maximum’ method. Furthermore, we evaluated how far from an approximated ‘true’ task‐related IAF the selected ‘stimulation frequency’ was, when calibrating this frequency based on a short rest‐EEG, a short task‐EEG, or simply selecting 10 Hz for all participants. For the ‘maximum’ method, rest‐EEG calibration was best, followed by task‐EEG, and then 10 Hz. For the ‘Gaussian fit’ method, rest‐EEG and task‐EEG‐based calibration were similarly accurate, and better than 10 Hz. These results lead to concrete recommendations about valid, and automated, estimation of individual oscillation markers in experimental and clinical settings. |
format | Online Article Text |
id | pubmed-9541964 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95419642022-10-14 Calibrating rhythmic stimulation parameters to individual electroencephalography markers: The consistency of individual alpha frequency in practical lab settings Janssens, Shanice E. W. Sack, Alexander T. Ten Oever, Sanne de Graaf, Tom A. Eur J Neurosci Special Issue Articles Rhythmic stimulation can be applied to modulate neuronal oscillations. Such ‘entrainment’ is optimized when stimulation frequency is individually calibrated based on magneto/encephalography markers. It remains unknown how consistent such individual markers are across days/sessions, within a session, or across cognitive states, hemispheres and estimation methods, especially in a realistic, practical, lab setting. We here estimated individual alpha frequency (IAF) repeatedly from short electroencephalography (EEG) measurements at rest or during an attention task (cognitive state), using single parieto‐occipital electrodes in 24 participants on 4 days (between‐sessions), with multiple measurements over an hour on 1 day (within‐session). First, we introduce an algorithm to automatically reject power spectra without a sufficiently clear peak to ensure unbiased IAF estimations. Then we estimated IAF via the traditional ‘maximum’ method and a ‘Gaussian fit’ method. IAF was reliable within‐ and between‐sessions for both cognitive states and hemispheres, though task‐IAF estimates tended to be more variable. Overall, the ‘Gaussian fit’ method was more reliable than the ‘maximum’ method. Furthermore, we evaluated how far from an approximated ‘true’ task‐related IAF the selected ‘stimulation frequency’ was, when calibrating this frequency based on a short rest‐EEG, a short task‐EEG, or simply selecting 10 Hz for all participants. For the ‘maximum’ method, rest‐EEG calibration was best, followed by task‐EEG, and then 10 Hz. For the ‘Gaussian fit’ method, rest‐EEG and task‐EEG‐based calibration were similarly accurate, and better than 10 Hz. These results lead to concrete recommendations about valid, and automated, estimation of individual oscillation markers in experimental and clinical settings. John Wiley and Sons Inc. 2021-09-05 2022-06 /pmc/articles/PMC9541964/ /pubmed/34363269 http://dx.doi.org/10.1111/ejn.15418 Text en © 2021 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Special Issue Articles Janssens, Shanice E. W. Sack, Alexander T. Ten Oever, Sanne de Graaf, Tom A. Calibrating rhythmic stimulation parameters to individual electroencephalography markers: The consistency of individual alpha frequency in practical lab settings |
title | Calibrating rhythmic stimulation parameters to individual electroencephalography markers: The consistency of individual alpha frequency in practical lab settings |
title_full | Calibrating rhythmic stimulation parameters to individual electroencephalography markers: The consistency of individual alpha frequency in practical lab settings |
title_fullStr | Calibrating rhythmic stimulation parameters to individual electroencephalography markers: The consistency of individual alpha frequency in practical lab settings |
title_full_unstemmed | Calibrating rhythmic stimulation parameters to individual electroencephalography markers: The consistency of individual alpha frequency in practical lab settings |
title_short | Calibrating rhythmic stimulation parameters to individual electroencephalography markers: The consistency of individual alpha frequency in practical lab settings |
title_sort | calibrating rhythmic stimulation parameters to individual electroencephalography markers: the consistency of individual alpha frequency in practical lab settings |
topic | Special Issue Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541964/ https://www.ncbi.nlm.nih.gov/pubmed/34363269 http://dx.doi.org/10.1111/ejn.15418 |
work_keys_str_mv | AT janssensshaniceew calibratingrhythmicstimulationparameterstoindividualelectroencephalographymarkerstheconsistencyofindividualalphafrequencyinpracticallabsettings AT sackalexandert calibratingrhythmicstimulationparameterstoindividualelectroencephalographymarkerstheconsistencyofindividualalphafrequencyinpracticallabsettings AT tenoeversanne calibratingrhythmicstimulationparameterstoindividualelectroencephalographymarkerstheconsistencyofindividualalphafrequencyinpracticallabsettings AT degraaftoma calibratingrhythmicstimulationparameterstoindividualelectroencephalographymarkerstheconsistencyofindividualalphafrequencyinpracticallabsettings |