Cargando…
Surface Functionalization of Surfactant‐Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance
The broad implementation of thermoelectricity requires high‐performance and low‐cost materials. One possibility is employing surfactant‐free solution synthesis to produce nanopowders. We propose the strategy of functionalizing “naked” particles’ surface by inorganic molecules to control the nanostru...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542085/ https://www.ncbi.nlm.nih.gov/pubmed/35799379 http://dx.doi.org/10.1002/anie.202207002 |
_version_ | 1784804070691700736 |
---|---|
author | Chang, Cheng Liu, Yu Ho Lee, Seung Chiara Spadaro, Maria Koskela, Kristopher M. Kleinhanns, Tobias Costanzo, Tommaso Arbiol, Jordi Brutchey, Richard L. Ibáñez, Maria |
author_facet | Chang, Cheng Liu, Yu Ho Lee, Seung Chiara Spadaro, Maria Koskela, Kristopher M. Kleinhanns, Tobias Costanzo, Tommaso Arbiol, Jordi Brutchey, Richard L. Ibáñez, Maria |
author_sort | Chang, Cheng |
collection | PubMed |
description | The broad implementation of thermoelectricity requires high‐performance and low‐cost materials. One possibility is employing surfactant‐free solution synthesis to produce nanopowders. We propose the strategy of functionalizing “naked” particles’ surface by inorganic molecules to control the nanostructure and, consequently, thermoelectric performance. In particular, we use bismuth thiolates to functionalize surfactant‐free SnTe particles’ surfaces. Upon thermal processing, bismuth thiolates decomposition renders SnTe‐Bi(2)S(3) nanocomposites with synergistic functions: 1) carrier concentration optimization by Bi doping; 2) Seebeck coefficient enhancement and bipolar effect suppression by energy filtering; and 3) lattice thermal conductivity reduction by small grain domains, grain boundaries and nanostructuration. Overall, the SnTe‐Bi(2)S(3) nanocomposites exhibit peak z T up to 1.3 at 873 K and an average z T of ≈0.6 at 300–873 K, which is among the highest reported for solution‐processed SnTe. |
format | Online Article Text |
id | pubmed-9542085 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95420852022-10-14 Surface Functionalization of Surfactant‐Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance Chang, Cheng Liu, Yu Ho Lee, Seung Chiara Spadaro, Maria Koskela, Kristopher M. Kleinhanns, Tobias Costanzo, Tommaso Arbiol, Jordi Brutchey, Richard L. Ibáñez, Maria Angew Chem Int Ed Engl Research Articles The broad implementation of thermoelectricity requires high‐performance and low‐cost materials. One possibility is employing surfactant‐free solution synthesis to produce nanopowders. We propose the strategy of functionalizing “naked” particles’ surface by inorganic molecules to control the nanostructure and, consequently, thermoelectric performance. In particular, we use bismuth thiolates to functionalize surfactant‐free SnTe particles’ surfaces. Upon thermal processing, bismuth thiolates decomposition renders SnTe‐Bi(2)S(3) nanocomposites with synergistic functions: 1) carrier concentration optimization by Bi doping; 2) Seebeck coefficient enhancement and bipolar effect suppression by energy filtering; and 3) lattice thermal conductivity reduction by small grain domains, grain boundaries and nanostructuration. Overall, the SnTe‐Bi(2)S(3) nanocomposites exhibit peak z T up to 1.3 at 873 K and an average z T of ≈0.6 at 300–873 K, which is among the highest reported for solution‐processed SnTe. John Wiley and Sons Inc. 2022-07-21 2022-08-26 /pmc/articles/PMC9542085/ /pubmed/35799379 http://dx.doi.org/10.1002/anie.202207002 Text en © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Chang, Cheng Liu, Yu Ho Lee, Seung Chiara Spadaro, Maria Koskela, Kristopher M. Kleinhanns, Tobias Costanzo, Tommaso Arbiol, Jordi Brutchey, Richard L. Ibáñez, Maria Surface Functionalization of Surfactant‐Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance |
title | Surface Functionalization of Surfactant‐Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance |
title_full | Surface Functionalization of Surfactant‐Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance |
title_fullStr | Surface Functionalization of Surfactant‐Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance |
title_full_unstemmed | Surface Functionalization of Surfactant‐Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance |
title_short | Surface Functionalization of Surfactant‐Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance |
title_sort | surface functionalization of surfactant‐free particles: a strategy to tailor the properties of nanocomposites for enhanced thermoelectric performance |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542085/ https://www.ncbi.nlm.nih.gov/pubmed/35799379 http://dx.doi.org/10.1002/anie.202207002 |
work_keys_str_mv | AT changcheng surfacefunctionalizationofsurfactantfreeparticlesastrategytotailorthepropertiesofnanocompositesforenhancedthermoelectricperformance AT liuyu surfacefunctionalizationofsurfactantfreeparticlesastrategytotailorthepropertiesofnanocompositesforenhancedthermoelectricperformance AT holeeseung surfacefunctionalizationofsurfactantfreeparticlesastrategytotailorthepropertiesofnanocompositesforenhancedthermoelectricperformance AT chiaraspadaromaria surfacefunctionalizationofsurfactantfreeparticlesastrategytotailorthepropertiesofnanocompositesforenhancedthermoelectricperformance AT koskelakristopherm surfacefunctionalizationofsurfactantfreeparticlesastrategytotailorthepropertiesofnanocompositesforenhancedthermoelectricperformance AT kleinhannstobias surfacefunctionalizationofsurfactantfreeparticlesastrategytotailorthepropertiesofnanocompositesforenhancedthermoelectricperformance AT costanzotommaso surfacefunctionalizationofsurfactantfreeparticlesastrategytotailorthepropertiesofnanocompositesforenhancedthermoelectricperformance AT arbioljordi surfacefunctionalizationofsurfactantfreeparticlesastrategytotailorthepropertiesofnanocompositesforenhancedthermoelectricperformance AT brutcheyrichardl surfacefunctionalizationofsurfactantfreeparticlesastrategytotailorthepropertiesofnanocompositesforenhancedthermoelectricperformance AT ibanezmaria surfacefunctionalizationofsurfactantfreeparticlesastrategytotailorthepropertiesofnanocompositesforenhancedthermoelectricperformance |