Cargando…
Synthetic MRI improves radiomics‐based glioblastoma survival prediction
Glioblastoma is an aggressive and fast‐growing brain tumor with poor prognosis. Predicting the expected survival of patients with glioblastoma is a key task for efficient treatment and surgery planning. Survival predictions could be enhanced by means of a radiomic system. However, these systems dema...
Autores principales: | Moya‐Sáez, Elisa, Navarro‐González, Rafael, Cepeda, Santiago, Pérez‐Núñez, Ángel, de Luis‐García, Rodrigo, Aja‐Fernández, Santiago, Alberola‐López, Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542221/ https://www.ncbi.nlm.nih.gov/pubmed/35485596 http://dx.doi.org/10.1002/nbm.4754 |
Ejemplares similares
-
Toward deep learning replacement of gadolinium in neuro-oncology: A review of contrast-enhanced synthetic MRI
por: Moya-Sáez, Elisa, et al.
Publicado: (2023) -
Predicting Short-Term Survival after Gross Total or Near Total Resection in Glioblastomas by Machine Learning-Based Radiomic Analysis of Preoperative MRI
por: Cepeda, Santiago, et al.
Publicado: (2021) -
Predicting Regions of Local Recurrence in Glioblastomas Using Voxel-Based Radiomic Features of Multiparametric Postoperative MRI
por: Cepeda, Santiago, et al.
Publicado: (2023) -
Increased MRI-based Brain Age in chronic migraine patients
por: Navarro-González, Rafael, et al.
Publicado: (2023) -
MRI radiomics and potential applications to glioblastoma
por: Hooper, Grayson W., et al.
Publicado: (2023)