Cargando…

Spaceborne Evidence That Ice‐Nucleating Particles Influence High‐Latitude Cloud Phase

Mixed‐phase clouds (MPCs), which consist of both supercooled cloud droplets and ice crystals, play an important role in the Earth's radiative energy budget and hydrological cycle. In particular, the fraction of ice crystals in MPCs determines their radiative effects, precipitation formation and...

Descripción completa

Detalles Bibliográficos
Autores principales: Carlsen, Tim, David, Robert O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542325/
https://www.ncbi.nlm.nih.gov/pubmed/36249281
http://dx.doi.org/10.1029/2022GL098041
Descripción
Sumario:Mixed‐phase clouds (MPCs), which consist of both supercooled cloud droplets and ice crystals, play an important role in the Earth's radiative energy budget and hydrological cycle. In particular, the fraction of ice crystals in MPCs determines their radiative effects, precipitation formation and lifetime. In order for ice crystals to form in MPCs, ice‐nucleating particles (INPs) are required. However, a large‐scale relationship between INPs and ice initiation in clouds has yet to be observed. By analyzing satellite observations of the typical transition temperature (T*) where MPCs become more frequent than liquid clouds, we constrain the importance of INPs in MPC formation. We find that over the Arctic and Southern Ocean, snow and sea ice cover significantly reduces T*. This indicates that the availability of INPs is essential in controlling cloud phase evolution and that local sources of INPs in the high‐latitudes play a key role in the formation of MPCs.