Cargando…

Selective autophagy and Golgi quality control in Drosophila

The LIR motif-docking site (LDS) of Atg8/LC3 proteins is essential for the binding of LC3-interacting region (LIR)-containing proteins and their subsequent degradation by macroautophagy/autophagy. In our recent study, we created a mutated LDS site in Atg8a, the Drosophila homolog of Atg8/LC3 and fou...

Descripción completa

Detalles Bibliográficos
Autores principales: Gohel, Raksha, Rahman, Ashrafur, Lőrincz, Peter, Nagy, Anikó, Csordás, Gábor, Zhang, Yan, Juhász, Gábor, Nezis, Ioannis P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542326/
https://www.ncbi.nlm.nih.gov/pubmed/35820026
http://dx.doi.org/10.1080/15548627.2022.2098765
Descripción
Sumario:The LIR motif-docking site (LDS) of Atg8/LC3 proteins is essential for the binding of LC3-interacting region (LIR)-containing proteins and their subsequent degradation by macroautophagy/autophagy. In our recent study, we created a mutated LDS site in Atg8a, the Drosophila homolog of Atg8/LC3 and found that LDS mutants accumulate known autophagy substrates and have reduced lifespan. We also conducted quantitative proteomics analyses and identified several proteins that are enriched in the LDS mutants, including Gmap (Golgi microtubule-associated protein). Gmap contains a LIR motif and accumulates in LDS mutants. We showed that Gmap and Atg8a interact in a LIR-LDS dependent manner and that the Golgi size and morphology are altered in Atg8a-LDS and Gmap-LIR motif mutants. Our findings highlight a role for Gmap in the regulation of Golgiphagy.