Cargando…
Memory B cells and long-lived plasma cells in AMR
Antibody-mediated rejection (AMR) has a strongly negative impact on long-term renal allograft survival. Currently, no recognized effective treatments are available, especially for chronic antibody-mediated rejection (CAMR). Donor-specific antibodies (DSAs) secreted by long-lived plasma cells and mem...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542532/ https://www.ncbi.nlm.nih.gov/pubmed/36190837 http://dx.doi.org/10.1080/0886022X.2022.2128374 |
Sumario: | Antibody-mediated rejection (AMR) has a strongly negative impact on long-term renal allograft survival. Currently, no recognized effective treatments are available, especially for chronic antibody-mediated rejection (CAMR). Donor-specific antibodies (DSAs) secreted by long-lived plasma cells and memory B cells are acknowledged as biomarkers of AMR. Nevertheless, it may be too late for the DSA routine examination production since DSAs may have binded to graft vascular endothelial cells through complement-dependent or complement-independent pathways. Therefore, methods to effectively monitor memory B cells and long-lived plasma cells and subsequently prevent DSA production are key to reducing the adverse effects of AMR. Therefore, this review mainly summarizes the production pathways of memory B cells and long-lived plasma cells and provides suggestions for the prevention of AMR after transplantation. |
---|