Cargando…

Memory B cells and long-lived plasma cells in AMR

Antibody-mediated rejection (AMR) has a strongly negative impact on long-term renal allograft survival. Currently, no recognized effective treatments are available, especially for chronic antibody-mediated rejection (CAMR). Donor-specific antibodies (DSAs) secreted by long-lived plasma cells and mem...

Descripción completa

Detalles Bibliográficos
Autores principales: Yue, Wenlong, Liu, Jia, Li, Xiaohu, Wang, Luman, Li, Jinfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542532/
https://www.ncbi.nlm.nih.gov/pubmed/36190837
http://dx.doi.org/10.1080/0886022X.2022.2128374
Descripción
Sumario:Antibody-mediated rejection (AMR) has a strongly negative impact on long-term renal allograft survival. Currently, no recognized effective treatments are available, especially for chronic antibody-mediated rejection (CAMR). Donor-specific antibodies (DSAs) secreted by long-lived plasma cells and memory B cells are acknowledged as biomarkers of AMR. Nevertheless, it may be too late for the DSA routine examination production since DSAs may have binded to graft vascular endothelial cells through complement-dependent or complement-independent pathways. Therefore, methods to effectively monitor memory B cells and long-lived plasma cells and subsequently prevent DSA production are key to reducing the adverse effects of AMR. Therefore, this review mainly summarizes the production pathways of memory B cells and long-lived plasma cells and provides suggestions for the prevention of AMR after transplantation.