Cargando…

Mitochondrial respiration supports autophagy to provide stress resistance during quiescence

Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Magalhaes-Novais, Silvia, Blecha, Jan, Naraine, Ravindra, Mikesova, Jana, Abaffy, Pavel, Pecinova, Alena, Milosevic, Mirko, Bohuslavova, Romana, Prochazka, Jan, Khan, Shawez, Novotna, Eliska, Sindelka, Radek, Machan, Radek, Dewerchin, Mieke, Vlcak, Erik, Kalucka, Joanna, Stemberkova Hubackova, Sona, Benda, Ales, Goveia, Jermaine, Mracek, Tomas, Barinka, Cyril, Carmeliet, Peter, Neuzil, Jiri, Rohlenova, Katerina, Rohlena, Jakub
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542673/
https://www.ncbi.nlm.nih.gov/pubmed/35258392
http://dx.doi.org/10.1080/15548627.2022.2038898
_version_ 1784804202764042240
author Magalhaes-Novais, Silvia
Blecha, Jan
Naraine, Ravindra
Mikesova, Jana
Abaffy, Pavel
Pecinova, Alena
Milosevic, Mirko
Bohuslavova, Romana
Prochazka, Jan
Khan, Shawez
Novotna, Eliska
Sindelka, Radek
Machan, Radek
Dewerchin, Mieke
Vlcak, Erik
Kalucka, Joanna
Stemberkova Hubackova, Sona
Benda, Ales
Goveia, Jermaine
Mracek, Tomas
Barinka, Cyril
Carmeliet, Peter
Neuzil, Jiri
Rohlenova, Katerina
Rohlena, Jakub
author_facet Magalhaes-Novais, Silvia
Blecha, Jan
Naraine, Ravindra
Mikesova, Jana
Abaffy, Pavel
Pecinova, Alena
Milosevic, Mirko
Bohuslavova, Romana
Prochazka, Jan
Khan, Shawez
Novotna, Eliska
Sindelka, Radek
Machan, Radek
Dewerchin, Mieke
Vlcak, Erik
Kalucka, Joanna
Stemberkova Hubackova, Sona
Benda, Ales
Goveia, Jermaine
Mracek, Tomas
Barinka, Cyril
Carmeliet, Peter
Neuzil, Jiri
Rohlenova, Katerina
Rohlena, Jakub
author_sort Magalhaes-Novais, Silvia
collection PubMed
description Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence. Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A(1); CI, respiratory complexes I; DCF-DA: 2′,7′-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2’-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.
format Online
Article
Text
id pubmed-9542673
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-95426732022-10-08 Mitochondrial respiration supports autophagy to provide stress resistance during quiescence Magalhaes-Novais, Silvia Blecha, Jan Naraine, Ravindra Mikesova, Jana Abaffy, Pavel Pecinova, Alena Milosevic, Mirko Bohuslavova, Romana Prochazka, Jan Khan, Shawez Novotna, Eliska Sindelka, Radek Machan, Radek Dewerchin, Mieke Vlcak, Erik Kalucka, Joanna Stemberkova Hubackova, Sona Benda, Ales Goveia, Jermaine Mracek, Tomas Barinka, Cyril Carmeliet, Peter Neuzil, Jiri Rohlenova, Katerina Rohlena, Jakub Autophagy Research Paper Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence. Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A(1); CI, respiratory complexes I; DCF-DA: 2′,7′-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2’-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot. Taylor & Francis 2022-03-08 /pmc/articles/PMC9542673/ /pubmed/35258392 http://dx.doi.org/10.1080/15548627.2022.2038898 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
spellingShingle Research Paper
Magalhaes-Novais, Silvia
Blecha, Jan
Naraine, Ravindra
Mikesova, Jana
Abaffy, Pavel
Pecinova, Alena
Milosevic, Mirko
Bohuslavova, Romana
Prochazka, Jan
Khan, Shawez
Novotna, Eliska
Sindelka, Radek
Machan, Radek
Dewerchin, Mieke
Vlcak, Erik
Kalucka, Joanna
Stemberkova Hubackova, Sona
Benda, Ales
Goveia, Jermaine
Mracek, Tomas
Barinka, Cyril
Carmeliet, Peter
Neuzil, Jiri
Rohlenova, Katerina
Rohlena, Jakub
Mitochondrial respiration supports autophagy to provide stress resistance during quiescence
title Mitochondrial respiration supports autophagy to provide stress resistance during quiescence
title_full Mitochondrial respiration supports autophagy to provide stress resistance during quiescence
title_fullStr Mitochondrial respiration supports autophagy to provide stress resistance during quiescence
title_full_unstemmed Mitochondrial respiration supports autophagy to provide stress resistance during quiescence
title_short Mitochondrial respiration supports autophagy to provide stress resistance during quiescence
title_sort mitochondrial respiration supports autophagy to provide stress resistance during quiescence
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542673/
https://www.ncbi.nlm.nih.gov/pubmed/35258392
http://dx.doi.org/10.1080/15548627.2022.2038898
work_keys_str_mv AT magalhaesnovaissilvia mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT blechajan mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT naraineravindra mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT mikesovajana mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT abaffypavel mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT pecinovaalena mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT milosevicmirko mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT bohuslavovaromana mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT prochazkajan mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT khanshawez mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT novotnaeliska mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT sindelkaradek mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT machanradek mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT dewerchinmieke mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT vlcakerik mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT kaluckajoanna mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT stemberkovahubackovasona mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT bendaales mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT goveiajermaine mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT mracektomas mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT barinkacyril mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT carmelietpeter mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT neuziljiri mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT rohlenovakaterina mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence
AT rohlenajakub mitochondrialrespirationsupportsautophagytoprovidestressresistanceduringquiescence