Cargando…

Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach

Modelling species interactions in diverse communities traditionally requires a prohibitively large number of species‐interaction coefficients, especially when considering environmental dependence of parameters. We implemented Bayesian variable selection via sparsity‐inducing priors on non‐linear spe...

Descripción completa

Detalles Bibliográficos
Autores principales: Weiss‐Lehman, Christopher P., Werner, Chhaya M., Bowler, Catherine H., Hallett, Lauren M., Mayfield, Margaret M., Godoy, Oscar, Aoyama, Lina, Barabás, György, Chu, Chengjin, Ladouceur, Emma, Larios, Loralee, Shoemaker, Lauren G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543015/
https://www.ncbi.nlm.nih.gov/pubmed/35106910
http://dx.doi.org/10.1111/ele.13977
_version_ 1784804278001467392
author Weiss‐Lehman, Christopher P.
Werner, Chhaya M.
Bowler, Catherine H.
Hallett, Lauren M.
Mayfield, Margaret M.
Godoy, Oscar
Aoyama, Lina
Barabás, György
Chu, Chengjin
Ladouceur, Emma
Larios, Loralee
Shoemaker, Lauren G.
author_facet Weiss‐Lehman, Christopher P.
Werner, Chhaya M.
Bowler, Catherine H.
Hallett, Lauren M.
Mayfield, Margaret M.
Godoy, Oscar
Aoyama, Lina
Barabás, György
Chu, Chengjin
Ladouceur, Emma
Larios, Loralee
Shoemaker, Lauren G.
author_sort Weiss‐Lehman, Christopher P.
collection PubMed
description Modelling species interactions in diverse communities traditionally requires a prohibitively large number of species‐interaction coefficients, especially when considering environmental dependence of parameters. We implemented Bayesian variable selection via sparsity‐inducing priors on non‐linear species abundance models to determine which species interactions should be retained and which can be represented as an average heterospecific interaction term, reducing the number of model parameters. We evaluated model performance using simulated communities, computing out‐of‐sample predictive accuracy and parameter recovery across different input sample sizes. We applied our method to a diverse empirical community, allowing us to disentangle the direct role of environmental gradients on species’ intrinsic growth rates from indirect effects via competitive interactions. We also identified a few neighbouring species from the diverse community that had non‐generic interactions with our focal species. This sparse modelling approach facilitates exploration of species interactions in diverse communities while maintaining a manageable number of parameters.
format Online
Article
Text
id pubmed-9543015
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-95430152022-10-14 Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach Weiss‐Lehman, Christopher P. Werner, Chhaya M. Bowler, Catherine H. Hallett, Lauren M. Mayfield, Margaret M. Godoy, Oscar Aoyama, Lina Barabás, György Chu, Chengjin Ladouceur, Emma Larios, Loralee Shoemaker, Lauren G. Ecol Lett Methods Modelling species interactions in diverse communities traditionally requires a prohibitively large number of species‐interaction coefficients, especially when considering environmental dependence of parameters. We implemented Bayesian variable selection via sparsity‐inducing priors on non‐linear species abundance models to determine which species interactions should be retained and which can be represented as an average heterospecific interaction term, reducing the number of model parameters. We evaluated model performance using simulated communities, computing out‐of‐sample predictive accuracy and parameter recovery across different input sample sizes. We applied our method to a diverse empirical community, allowing us to disentangle the direct role of environmental gradients on species’ intrinsic growth rates from indirect effects via competitive interactions. We also identified a few neighbouring species from the diverse community that had non‐generic interactions with our focal species. This sparse modelling approach facilitates exploration of species interactions in diverse communities while maintaining a manageable number of parameters. John Wiley and Sons Inc. 2022-02-02 2022-05 /pmc/articles/PMC9543015/ /pubmed/35106910 http://dx.doi.org/10.1111/ele.13977 Text en © 2022 The Authors. Ecology Letters published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Methods
Weiss‐Lehman, Christopher P.
Werner, Chhaya M.
Bowler, Catherine H.
Hallett, Lauren M.
Mayfield, Margaret M.
Godoy, Oscar
Aoyama, Lina
Barabás, György
Chu, Chengjin
Ladouceur, Emma
Larios, Loralee
Shoemaker, Lauren G.
Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach
title Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach
title_full Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach
title_fullStr Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach
title_full_unstemmed Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach
title_short Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach
title_sort disentangling key species interactions in diverse and heterogeneous communities: a bayesian sparse modelling approach
topic Methods
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543015/
https://www.ncbi.nlm.nih.gov/pubmed/35106910
http://dx.doi.org/10.1111/ele.13977
work_keys_str_mv AT weisslehmanchristopherp disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach
AT wernerchhayam disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach
AT bowlercatherineh disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach
AT hallettlaurenm disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach
AT mayfieldmargaretm disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach
AT godoyoscar disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach
AT aoyamalina disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach
AT barabasgyorgy disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach
AT chuchengjin disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach
AT ladouceuremma disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach
AT lariosloralee disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach
AT shoemakerlaureng disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach