Cargando…
Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach
Modelling species interactions in diverse communities traditionally requires a prohibitively large number of species‐interaction coefficients, especially when considering environmental dependence of parameters. We implemented Bayesian variable selection via sparsity‐inducing priors on non‐linear spe...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543015/ https://www.ncbi.nlm.nih.gov/pubmed/35106910 http://dx.doi.org/10.1111/ele.13977 |
_version_ | 1784804278001467392 |
---|---|
author | Weiss‐Lehman, Christopher P. Werner, Chhaya M. Bowler, Catherine H. Hallett, Lauren M. Mayfield, Margaret M. Godoy, Oscar Aoyama, Lina Barabás, György Chu, Chengjin Ladouceur, Emma Larios, Loralee Shoemaker, Lauren G. |
author_facet | Weiss‐Lehman, Christopher P. Werner, Chhaya M. Bowler, Catherine H. Hallett, Lauren M. Mayfield, Margaret M. Godoy, Oscar Aoyama, Lina Barabás, György Chu, Chengjin Ladouceur, Emma Larios, Loralee Shoemaker, Lauren G. |
author_sort | Weiss‐Lehman, Christopher P. |
collection | PubMed |
description | Modelling species interactions in diverse communities traditionally requires a prohibitively large number of species‐interaction coefficients, especially when considering environmental dependence of parameters. We implemented Bayesian variable selection via sparsity‐inducing priors on non‐linear species abundance models to determine which species interactions should be retained and which can be represented as an average heterospecific interaction term, reducing the number of model parameters. We evaluated model performance using simulated communities, computing out‐of‐sample predictive accuracy and parameter recovery across different input sample sizes. We applied our method to a diverse empirical community, allowing us to disentangle the direct role of environmental gradients on species’ intrinsic growth rates from indirect effects via competitive interactions. We also identified a few neighbouring species from the diverse community that had non‐generic interactions with our focal species. This sparse modelling approach facilitates exploration of species interactions in diverse communities while maintaining a manageable number of parameters. |
format | Online Article Text |
id | pubmed-9543015 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95430152022-10-14 Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach Weiss‐Lehman, Christopher P. Werner, Chhaya M. Bowler, Catherine H. Hallett, Lauren M. Mayfield, Margaret M. Godoy, Oscar Aoyama, Lina Barabás, György Chu, Chengjin Ladouceur, Emma Larios, Loralee Shoemaker, Lauren G. Ecol Lett Methods Modelling species interactions in diverse communities traditionally requires a prohibitively large number of species‐interaction coefficients, especially when considering environmental dependence of parameters. We implemented Bayesian variable selection via sparsity‐inducing priors on non‐linear species abundance models to determine which species interactions should be retained and which can be represented as an average heterospecific interaction term, reducing the number of model parameters. We evaluated model performance using simulated communities, computing out‐of‐sample predictive accuracy and parameter recovery across different input sample sizes. We applied our method to a diverse empirical community, allowing us to disentangle the direct role of environmental gradients on species’ intrinsic growth rates from indirect effects via competitive interactions. We also identified a few neighbouring species from the diverse community that had non‐generic interactions with our focal species. This sparse modelling approach facilitates exploration of species interactions in diverse communities while maintaining a manageable number of parameters. John Wiley and Sons Inc. 2022-02-02 2022-05 /pmc/articles/PMC9543015/ /pubmed/35106910 http://dx.doi.org/10.1111/ele.13977 Text en © 2022 The Authors. Ecology Letters published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Methods Weiss‐Lehman, Christopher P. Werner, Chhaya M. Bowler, Catherine H. Hallett, Lauren M. Mayfield, Margaret M. Godoy, Oscar Aoyama, Lina Barabás, György Chu, Chengjin Ladouceur, Emma Larios, Loralee Shoemaker, Lauren G. Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach |
title | Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach |
title_full | Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach |
title_fullStr | Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach |
title_full_unstemmed | Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach |
title_short | Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach |
title_sort | disentangling key species interactions in diverse and heterogeneous communities: a bayesian sparse modelling approach |
topic | Methods |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543015/ https://www.ncbi.nlm.nih.gov/pubmed/35106910 http://dx.doi.org/10.1111/ele.13977 |
work_keys_str_mv | AT weisslehmanchristopherp disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach AT wernerchhayam disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach AT bowlercatherineh disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach AT hallettlaurenm disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach AT mayfieldmargaretm disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach AT godoyoscar disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach AT aoyamalina disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach AT barabasgyorgy disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach AT chuchengjin disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach AT ladouceuremma disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach AT lariosloralee disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach AT shoemakerlaureng disentanglingkeyspeciesinteractionsindiverseandheterogeneouscommunitiesabayesiansparsemodellingapproach |