Cargando…

A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones

Indole‐3‐acetic acid (IAA) is the main naturally occurring auxin and is produced by organisms of all kingdoms of life. In addition to the regulation of plant growth and development, IAA plays an important role in the interaction between plants and growth‐promoting and phytopathogenic bacteria by reg...

Descripción completa

Detalles Bibliográficos
Autores principales: Rico‐Jiménez, Miriam, Roca, Amalia, Krell, Tino, Matilla, Miguel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543091/
https://www.ncbi.nlm.nih.gov/pubmed/35088505
http://dx.doi.org/10.1111/1462-2920.15920
Descripción
Sumario:Indole‐3‐acetic acid (IAA) is the main naturally occurring auxin and is produced by organisms of all kingdoms of life. In addition to the regulation of plant growth and development, IAA plays an important role in the interaction between plants and growth‐promoting and phytopathogenic bacteria by regulating bacterial gene expression and physiology. We show here that an IAA metabolizing plant‐associated Pseudomonas putida isolate exhibits chemotaxis to IAA that is independent of auxin metabolism. We found that IAA chemotaxis is based on the activity of the PcpI chemoreceptor and heterologous expression of pcpI conferred IAA taxis to different environmental and human pathogenic isolates of the Pseudomonas genus. Using ligand screening, microcalorimetry and quantitative chemotaxis assays, we found that PcpI failed to bind IAA directly, but recognized and mediated chemoattractions to various aromatic compounds, including the phytohormone salicylic acid. The expression of pcpI and its role in the interactions with plants was also investigated. PcpI extends the range of central signal molecules recognized by chemoreceptors. To our knowledge, this is the first report on a bacterial receptor that responds to two different phytohormones. Our study reinforces the multifunctional role of IAA and salicylic acid as intra‐ and inter‐kingdom signal molecules.