Cargando…
Catastrophe optics theory unveils the localised wave aberration features that generate ghost images
Monocular polyplopia (ghost or multiple images) is a serious visual impediment for some people who report seeing two (diplopia), three (triplopia) or even more images. Polyplopia is expected to appear if the point spread function (PSF) has multiple intensity cores (a dense concentration of a large p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543491/ https://www.ncbi.nlm.nih.gov/pubmed/35620968 http://dx.doi.org/10.1111/opo.13008 |
Sumario: | Monocular polyplopia (ghost or multiple images) is a serious visual impediment for some people who report seeing two (diplopia), three (triplopia) or even more images. Polyplopia is expected to appear if the point spread function (PSF) has multiple intensity cores (a dense concentration of a large portion of the radiant flux contained in the PSF) relatively separated from each other, each of which contributes to a distinct image. We present a theory that assigns these multiple PSF cores to specific features of aberrated wavefronts, thereby accounting optically for the perceptual phenomenon of monocular polyplopia. The theory provides two major conclusions. First, the most likely event giving rise to multiple PSF cores is the presence of hyperbolic, or less probably elliptical, umbilic caustics (using the terminology of catastrophe optics). Second, those umbilic caustics formed on the retinal surface are associated with certain points of the wave aberration function, called cusps of Gauss, where the gradient of a curvature function vanishes. However, not all cusps of Gauss generate those umbilic caustics. We also provide necessary conditions for those cusps of Gauss to be fertile. To show the potential of this theoretical framework for understanding the nature and origin of polyplopia, we provide specific examples of ocular wave aberration functions that induce diplopia and triplopia. The polyplopia effects in these examples are illustrated by depicting the multi‐core PSFs and the convolved retinal images for clinical letter charts, both through computer simulations and through experimental recording using an adaptive optics set‐up. The number and location of cores in the PSF is thus a potentially useful metric for the existence and severity of polyplopia in spatial vision. These examples also help explain why physiological pupil constriction might reduce the incidence of ghosting and multiple images of daily objects that affect vision with dilated pupils. This mechanistic explanation suggests a possible role for optical phase‐masking as a clinical treatment for polyplopia and ghosting. |
---|