Cargando…
Quantifying invasibility
Invasibility, the chance of a population to grow from rarity and become established, plays a fundamental role in population genetics, ecology, epidemiology and evolution. For many decades, the mean growth rate of a species when it is rare has been employed as an invasion criterion. Recent studies sh...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543749/ https://www.ncbi.nlm.nih.gov/pubmed/35717561 http://dx.doi.org/10.1111/ele.14031 |
Sumario: | Invasibility, the chance of a population to grow from rarity and become established, plays a fundamental role in population genetics, ecology, epidemiology and evolution. For many decades, the mean growth rate of a species when it is rare has been employed as an invasion criterion. Recent studies show that the mean growth rate fails as a quantitative metric for invasibility, with its magnitude sometimes even increasing while the invasibility decreases. Here we provide two novel formulae, based on the diffusion approximation and a large‐deviations (Wentzel–Kramers–Brillouin) approach, for the chance of invasion given the mean growth and its variance. The first formula has the virtue of simplicity, while the second one holds over a wider parameter range. The efficacy of the formulae, including their accompanying data analysis technique, is demonstrated using synthetic time series generated from canonical models and parameterised with empirical data. |
---|