Cargando…
Procalcitonin Testing With Secondary Coinfection in Patients With COVID-19
Background The coronavirus disease (COVID-19) virus has caused millions of deaths. It is difficult to differentiate between pure viral COVID-19 pneumonia and secondary infection. Clinicians often use procalcitonin (PCT) to decide on empiric antibiotic therapy. Methodology We performed a retrospectiv...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543856/ https://www.ncbi.nlm.nih.gov/pubmed/36237753 http://dx.doi.org/10.7759/cureus.28898 |
Sumario: | Background The coronavirus disease (COVID-19) virus has caused millions of deaths. It is difficult to differentiate between pure viral COVID-19 pneumonia and secondary infection. Clinicians often use procalcitonin (PCT) to decide on empiric antibiotic therapy. Methodology We performed a retrospective study of patients admitted with COVID-19 between January 1st, 2020, and June 30th, 2020. Patient demographics, clinical findings, and laboratory findings with a focus on PCT levels were recorded. Coinfection was considered if clinicians ordered a septic workup (urine, blood, and respiratory cultures) or if the physicians started or escalated antimicrobial therapy. PCT levels on the day of culture and daily for the next three days were recorded. Significant PCT change was defined as a decrease in PCT levels of >50% from the initial elevated PCT level. Results In total, 143 (59.8%) patients had one secondary infection. These included pulmonary infections (118, 49.4%), blood infections (99, 41.4%), and urine infections (64, 26.8%). Many patients had more than one documented positive culture: respiratory system and blood together in 80 (33.4%) patients, sputum and urine in 55 (23.1%) patients, and urine and blood in 46 (19.2%) patients. Out of the 143 patients with a positive culture, PCT was abnormal on the day of positive culture in 93 (65.5%), while PCT was abnormal in 64 out of 96 on the day of negative culture (66.7%) (p = 0.89). Individual analysis for PCT levels of respiratory cultures showed out of 118 positive sputum cultures, 86 (72%) had abnormal PCT on the day of culture. PCT in positive versus negative cultures was not significantly different, with median PCT (interquartile range, IQR) of 1.66 (6.61) versus 1.03 (2.23) (p = 0.172). For blood cultures, out of 99 positive blood cultures, 73 (73%) had abnormal PCT levels on the day of the culture. PCT in positive versus negative cultures was significantly elevated, with a median of 1.61 (5.97) vs. 0.65 (1.77) (p < 0.001). For urine, out of 64 positive cultures, 41 (64.1%) had abnormal PCT levels on the day of the culture. PCT in positive versus negative cultures was not significantly different, with a median of 0.71 (2.92) vs. 0.93 (4.71) (p = 0.551). To observe the change in PCT after culture, PCT values for the next three days after culture were analyzed. We found that patients with positive cultures had higher PCT levels than those with negative cultures. There was no significant improvement over the following three days. Patients with abnormal PCT on the day of the suspected infection had a longer length of stay in the hospital, with a median (IQR) of 23.9 days (3.16) vs. 16.9 days (2.18) (p = 0.021). Conclusions Secondary coinfections in patients with COVID-19 infections are not associated with PCT elevation on the day of suspected secondary infection. However, most patients with bacteremia had a significant elevation of PCT on the day of bacteremia before collection and reporting of positive culture. Patients with abnormal PCT levels on the day of suspected infection had a longer hospital stay than patients with normal PCT levels. Subsequent testing of PCT in patients showed no significant improvement in PCT. |
---|