Cargando…

The Influence of Strain on the Rotation of an Artificial Molecular Motor

In artificial small‐molecule machines, molecular motors can be used to perform work on coupled systems by applying a mechanical load—such as strain—that allows for energy transduction. Here, we report how ring strain influences the rotation of a rotary molecular motor. Bridging the two halves of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Kathan, Michael, Crespi, Stefano, Troncossi, Axel, Stindt, Charlotte N., Toyoda, Ryojun, Feringa, Ben L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544085/
https://www.ncbi.nlm.nih.gov/pubmed/35718745
http://dx.doi.org/10.1002/anie.202205801
_version_ 1784804521008955392
author Kathan, Michael
Crespi, Stefano
Troncossi, Axel
Stindt, Charlotte N.
Toyoda, Ryojun
Feringa, Ben L.
author_facet Kathan, Michael
Crespi, Stefano
Troncossi, Axel
Stindt, Charlotte N.
Toyoda, Ryojun
Feringa, Ben L.
author_sort Kathan, Michael
collection PubMed
description In artificial small‐molecule machines, molecular motors can be used to perform work on coupled systems by applying a mechanical load—such as strain—that allows for energy transduction. Here, we report how ring strain influences the rotation of a rotary molecular motor. Bridging the two halves of the motor with alkyl tethers of varying sizes yields macrocycles that constrain the motor's movement. Increasing the ring size by two methylene increments increases the mobility of the motor stepwise and allows for fine‐tuning of strain in the system. Small macrocycles (8–14 methylene units) only undergo a photochemical E/Z isomerization. Larger macrocycles (16–22 methylene units) can perform a full rotational cycle, but thermal helix inversion is strongly dependent on the ring size. This study provides systematic and quantitative insight into the behavior of molecular motors under a mechanical load, paving the way for the development of complex coupled nanomachinery.
format Online
Article
Text
id pubmed-9544085
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-95440852022-10-14 The Influence of Strain on the Rotation of an Artificial Molecular Motor Kathan, Michael Crespi, Stefano Troncossi, Axel Stindt, Charlotte N. Toyoda, Ryojun Feringa, Ben L. Angew Chem Int Ed Engl Research Articles In artificial small‐molecule machines, molecular motors can be used to perform work on coupled systems by applying a mechanical load—such as strain—that allows for energy transduction. Here, we report how ring strain influences the rotation of a rotary molecular motor. Bridging the two halves of the motor with alkyl tethers of varying sizes yields macrocycles that constrain the motor's movement. Increasing the ring size by two methylene increments increases the mobility of the motor stepwise and allows for fine‐tuning of strain in the system. Small macrocycles (8–14 methylene units) only undergo a photochemical E/Z isomerization. Larger macrocycles (16–22 methylene units) can perform a full rotational cycle, but thermal helix inversion is strongly dependent on the ring size. This study provides systematic and quantitative insight into the behavior of molecular motors under a mechanical load, paving the way for the development of complex coupled nanomachinery. John Wiley and Sons Inc. 2022-07-13 2022-08-22 /pmc/articles/PMC9544085/ /pubmed/35718745 http://dx.doi.org/10.1002/anie.202205801 Text en © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Kathan, Michael
Crespi, Stefano
Troncossi, Axel
Stindt, Charlotte N.
Toyoda, Ryojun
Feringa, Ben L.
The Influence of Strain on the Rotation of an Artificial Molecular Motor
title The Influence of Strain on the Rotation of an Artificial Molecular Motor
title_full The Influence of Strain on the Rotation of an Artificial Molecular Motor
title_fullStr The Influence of Strain on the Rotation of an Artificial Molecular Motor
title_full_unstemmed The Influence of Strain on the Rotation of an Artificial Molecular Motor
title_short The Influence of Strain on the Rotation of an Artificial Molecular Motor
title_sort influence of strain on the rotation of an artificial molecular motor
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544085/
https://www.ncbi.nlm.nih.gov/pubmed/35718745
http://dx.doi.org/10.1002/anie.202205801
work_keys_str_mv AT kathanmichael theinfluenceofstrainontherotationofanartificialmolecularmotor
AT crespistefano theinfluenceofstrainontherotationofanartificialmolecularmotor
AT troncossiaxel theinfluenceofstrainontherotationofanartificialmolecularmotor
AT stindtcharlotten theinfluenceofstrainontherotationofanartificialmolecularmotor
AT toyodaryojun theinfluenceofstrainontherotationofanartificialmolecularmotor
AT feringabenl theinfluenceofstrainontherotationofanartificialmolecularmotor
AT kathanmichael influenceofstrainontherotationofanartificialmolecularmotor
AT crespistefano influenceofstrainontherotationofanartificialmolecularmotor
AT troncossiaxel influenceofstrainontherotationofanartificialmolecularmotor
AT stindtcharlotten influenceofstrainontherotationofanartificialmolecularmotor
AT toyodaryojun influenceofstrainontherotationofanartificialmolecularmotor
AT feringabenl influenceofstrainontherotationofanartificialmolecularmotor