Cargando…
Bootstrap vs asymptotic variance estimation when using propensity score weighting with continuous and binary outcomes
We used Monte Carlo simulations to compare the performance of asymptotic variance estimators to that of the bootstrap when estimating standard errors of differences in means, risk differences, and relative risks using propensity score weighting. We considered four different sets of weights: conventi...
Autor principal: | Austin, Peter C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544125/ https://www.ncbi.nlm.nih.gov/pubmed/35841200 http://dx.doi.org/10.1002/sim.9519 |
Ejemplares similares
-
Variance estimation when using propensity‐score matching with replacement with survival or time‐to‐event outcomes
por: Austin, Peter C., et al.
Publicado: (2020) -
Assessing the performance of the generalized propensity score for estimating the effect of quantitative or continuous exposures on binary outcomes
por: Austin, Peter C.
Publicado: (2018) -
When does bootstrap work?: asymptotic results and simulations
por: Mammen, Enno
Publicado: (1992) -
The use of bootstrapping when using propensity-score matching without replacement: a simulation study
por: Austin, Peter C, et al.
Publicado: (2014) -
Nearest Neighbour Propensity Score Matching and Bootstrapping for Estimating Binary Patient Response in Oncology: A Monte Carlo Simulation
por: Geldof, Tine, et al.
Publicado: (2020)