Cargando…
Guest‐Modulated Circularly Polarized Luminescence by Ligand‐to‐Ligand Chirality Transfer in Heteroleptic Pd(II) Coordination Cages
Multicomponent metallo‐supramolecular assembly allows the rational combination of different building blocks. Discrete multifunctional hosts with an accessible cavity can be prepared in a non‐statistical fashion. We employ our shape‐complementary assembly (SCA) method to achieve for the first time in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544203/ https://www.ncbi.nlm.nih.gov/pubmed/35616285 http://dx.doi.org/10.1002/anie.202205725 |
Sumario: | Multicomponent metallo‐supramolecular assembly allows the rational combination of different building blocks. Discrete multifunctional hosts with an accessible cavity can be prepared in a non‐statistical fashion. We employ our shape‐complementary assembly (SCA) method to achieve for the first time integrative self‐sorting of heteroleptic Pd(II) cages showing guest‐tunable circularly polarized luminescence (CPL). An enantiopure helicene‐based ligand (M or P configuration) is coupled with a non‐chiral emissive fluorenone‐based ligand (A or B) to form a series of Pd(2)L(2)L′(2) assemblies. The modular strategy allows to impart the chiral information of the helicenes to the overall supramolecular system, resulting in CPL from the non‐chiral component. Guest binding results in a 4‐fold increase of CPL intensity. The principle offers potential to generate libraries of multifunctional materials with applications in molecular recognition, enantioselective photo‐redox catalysis and information processing. |
---|