Cargando…

A novel CLCNKB variant in a Chinese family with classic Bartter syndrome and prenatal genetic diagnosis

BACKGROUND: Type III Bartter syndrome (BS), often known as classic Bartter syndrome is caused by variants in CLCNKB gene, which encoding the basolateral chloride channel protein ClC‐Kb, and is characterized by renal salt wasting, hypokalemia, metabolic alkalosis, increased renin, and aldosterone lev...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Qianying, Xiang, Qinqin, Tan, Yu, Xiao, Xiao, Xie, Hanbing, Wang, He, Yang, Mei, Liu, Shanling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544217/
https://www.ncbi.nlm.nih.gov/pubmed/35913199
http://dx.doi.org/10.1002/mgg3.2027
Descripción
Sumario:BACKGROUND: Type III Bartter syndrome (BS), often known as classic Bartter syndrome is caused by variants in CLCNKB gene, which encoding the basolateral chloride channel protein ClC‐Kb, and is characterized by renal salt wasting, hypokalemia, metabolic alkalosis, increased renin, and aldosterone levels. METHODS: A 2‐year‐old boy presented severe malnutrition, severe metabolic alkalosis and severe hypokalemia and was clinically diagnosed with BS. The trio exome sequencing (ES) was performed to discover the genetic cause of this patient, followed by validation using Sanger sequencing and quantitative polymerase chain reaction subsequently. RESULTS: The genetic analysis indicated that this patient with a compound heterozygous variants of CLCNKB gene including a novel nonsense variant c.876 T > A and a whole‐gene deletion. The two variants were inherited from his parents, respectively. Subsequently, target sequencing of CLCNKB gene was performed for next pregnancy, and prenatal genetic diagnosis was provided for the family. CONCLUSIONS: The results of current study identified the compound heterozygous variants in a patient with classic BS. The novel variant expands the spectrum of CLCNKB variants in BS. Our study also indicates that ES is an alternative tool to simultaneously detect single‐nucleotide variants and copy‐number variants.