Cargando…
A robust Bayesian bias‐adjusted random effects model for consideration of uncertainty about bias terms in evidence synthesis
Meta‐analysis is a statistical method used in evidence synthesis for combining, analyzing and summarizing studies that have the same target endpoint and aims to derive a pooled quantitative estimate using fixed and random effects models or network models. Differences among included studies depend on...
Autores principales: | Raices Cruz, Ivette, Troffaes, Matthias C. M., Lindström, Johan, Sahlin, Ullrika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544319/ https://www.ncbi.nlm.nih.gov/pubmed/35487762 http://dx.doi.org/10.1002/sim.9422 |
Ejemplares similares
-
“This Is What We Don't Know”: Treating Epistemic Uncertainty in Bayesian Networks for Risk Assessment
por: Sahlin, Ullrika, et al.
Publicado: (2020) -
Robust Bayesian meta‐analysis: Model‐averaging across complementary publication bias adjustment methods
por: Bartoš, František, et al.
Publicado: (2022) -
Evidence Synthesis for Decision Making 3: Heterogeneity—Subgroups, Meta-Regression, Bias, and Bias-Adjustment
por: Dias, Sofia, et al.
Publicado: (2013) -
Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme
por: Beheshti, Iman, et al.
Publicado: (2019) -
Bayesian Network Applications for Sustainable Holistic Water Resources Management: Modeling Opportunities for South Africa
por: Govender, Indrani Hazel, et al.
Publicado: (2021)