Cargando…
Evaluating the Reliability of Neurological Pupillary Index as a Prognostic Measurement of Neurological Function in Critical Care Patients
Background Neurological pupil index (NPi) is a novel method of assessing pupillary size and reactivity using pupillometry to reduce human subjectivity. This paper aims to evaluate the use of NPi as a potential prognostic tool in a broad population of neurocritical care patients by observing the corr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544528/ https://www.ncbi.nlm.nih.gov/pubmed/36237784 http://dx.doi.org/10.7759/cureus.28901 |
Sumario: | Background Neurological pupil index (NPi) is a novel method of assessing pupillary size and reactivity using pupillometry to reduce human subjectivity. This paper aims to evaluate the use of NPi as a potential prognostic tool in a broad population of neurocritical care patients by observing the correlation between NPi, modified Rankin Scale (mRS), and Glasgow Coma Scale (GCS). Methods Our data was collected from 194 patients in the neurosurgical intensive care unit (ICU) at Arrowhead Regional Medical Center (ARMC), as determined by the power calculation. We utilized the Kolmogorov-Smirnova and Shapiro-Wilk normality tests with Lilliefors significance correction. Pearson product-moment correlation was performed between average final NPi and final GCS. Multi-variate linear regression and analysis of variance (ANOVA) were used to evaluate the association and predictive capabilities of NPi on GCS and discharge mRS. Finally, we evaluated whether age, ethnicity, sex, length of stay (LOS), or discharge location were significantly associated with NPi. Results We observed a significant correlation between final GCS and NPi (r=0.609, p<0.001). Our regression analysis revealed that NPi significantly predicted GCS and mRS scores; however, no associations were found between age, ethnicity, sex, LOS, or discharge location. Limitations of our study include a single institutional study with a lack of disease subtyping and the inability to quantify the predictive ability of NPi. Conclusion The analysis revealed a strong correlation between final GCS and average final NPi. NPi was also able to significantly predict GCS and mRS scores. The correlation between NPi and established methods to determine neurological function, such as mRS and GCS, suggests that NPi can be a good prognostication tool for neurological diseases. |
---|