Cargando…
FSTruct: An F (ST)‐based tool for measuring ancestry variation in inference of population structure
In model‐based inference of population structure from individual‐level genetic data, individuals are assigned membership coefficients in a series of statistical clusters generated by clustering algorithms. Distinct patterns of variability in membership coefficients can be produced for different grou...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544611/ https://www.ncbi.nlm.nih.gov/pubmed/35596736 http://dx.doi.org/10.1111/1755-0998.13647 |
Sumario: | In model‐based inference of population structure from individual‐level genetic data, individuals are assigned membership coefficients in a series of statistical clusters generated by clustering algorithms. Distinct patterns of variability in membership coefficients can be produced for different groups of individuals, for example, representing different predefined populations, sampling sites or time periods. Such variability can be difficult to capture in a single numerical value; membership coefficient vectors are multivariate and potentially incommensurable across predefined groups, as the number of clusters over which individuals are distributed can vary among groups of interest. Further, two groups might share few clusters in common, so that membership coefficient vectors are concentrated on different clusters. We introduce a method for measuring the variability of membership coefficients of individuals in a predefined group, making use of an analogy between variability across individuals in membership coefficient vectors and variation across populations in allele frequency vectors. We show that in a model in which membership coefficient vectors in a population follow a Dirichlet distribution, the measure increases linearly with a parameter describing the variance of a specified component of the membership vector and does not depend on its mean. We apply the approach, which makes use of a normalized F (ST) statistic, to data on inferred population structure in three example scenarios. We also introduce a bootstrap test for equivalence of two or more predefined groups in their level of membership coefficient variability. Our methods are implemented in the r package FSTruct. |
---|