Cargando…

Activation of the myosin motors in fast‐twitch muscle of the mouse is controlled by mechano‐sensing in the myosin filaments

ABSTRACT: Myosin motors in resting muscle are inactivated by folding against the backbone of the myosin filament in an ordered helical array and must be released from that conformation to engage in force generation. Time‐resolved X‐ray diffraction from single fibres of amphibian muscle showed that m...

Descripción completa

Detalles Bibliográficos
Autores principales: Hill, Cameron, Brunello, Elisabetta, Fusi, Luca, Ovejero, Jesús Garcia, Irving, Malcolm
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544795/
https://www.ncbi.nlm.nih.gov/pubmed/35912434
http://dx.doi.org/10.1113/JP283048
_version_ 1784804677933596672
author Hill, Cameron
Brunello, Elisabetta
Fusi, Luca
Ovejero, Jesús Garcia
Irving, Malcolm
author_facet Hill, Cameron
Brunello, Elisabetta
Fusi, Luca
Ovejero, Jesús Garcia
Irving, Malcolm
author_sort Hill, Cameron
collection PubMed
description ABSTRACT: Myosin motors in resting muscle are inactivated by folding against the backbone of the myosin filament in an ordered helical array and must be released from that conformation to engage in force generation. Time‐resolved X‐ray diffraction from single fibres of amphibian muscle showed that myosin filament activation could be inhibited by imposing unloaded shortening at the start of stimulation, suggesting that filaments were activated by mechanical stress. Here we improved the signal‐to‐noise ratio of that approach using whole extensor digitorum longus muscles of the mouse contracting tetanically at 28°C. Changes in X‐ray signals associated with myosin filament activation, including the decrease in the first‐order myosin layer line associated with the helical motor array, increase in the spacing of a myosin‐based reflection associated with packing of myosin tails in the filament backbone, and increase in the ratio of the 1,1 and 1,0 equatorial reflections associated with movement of motors away from the backbone, were delayed by imposing 10‐ms unloaded shortening at the start of stimulation. These results show that myosin filaments are predominantly activated by filament stress, as in amphibian muscle. However, a small component of filament activation at zero load was detected, implying an independent mechanism of partial filament activation. X‐ray interference measurements indicated a switch‐like change in myosin motor conformation at the start of force development, accompanied by transient disordering of motors in the regions of the myosin filament near its midpoint, suggesting that filament zonal dynamics also play a role in its activation. [Image: see text] KEY POINTS: Activation of myosin filaments in extensor digitorum longus muscles of the mouse is delayed by imposing rapid shortening from the start of stimulation. Stress is the major mechanism of myosin filament activation in these muscles, but there is a small component of filament activation during electrical stimulation at zero stress. Myosin motors switch rapidly from the folded inhibited conformation to the actin‐attached force‐generating conformation early in force development.
format Online
Article
Text
id pubmed-9544795
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-95447952022-10-14 Activation of the myosin motors in fast‐twitch muscle of the mouse is controlled by mechano‐sensing in the myosin filaments Hill, Cameron Brunello, Elisabetta Fusi, Luca Ovejero, Jesús Garcia Irving, Malcolm J Physiol Muscle ABSTRACT: Myosin motors in resting muscle are inactivated by folding against the backbone of the myosin filament in an ordered helical array and must be released from that conformation to engage in force generation. Time‐resolved X‐ray diffraction from single fibres of amphibian muscle showed that myosin filament activation could be inhibited by imposing unloaded shortening at the start of stimulation, suggesting that filaments were activated by mechanical stress. Here we improved the signal‐to‐noise ratio of that approach using whole extensor digitorum longus muscles of the mouse contracting tetanically at 28°C. Changes in X‐ray signals associated with myosin filament activation, including the decrease in the first‐order myosin layer line associated with the helical motor array, increase in the spacing of a myosin‐based reflection associated with packing of myosin tails in the filament backbone, and increase in the ratio of the 1,1 and 1,0 equatorial reflections associated with movement of motors away from the backbone, were delayed by imposing 10‐ms unloaded shortening at the start of stimulation. These results show that myosin filaments are predominantly activated by filament stress, as in amphibian muscle. However, a small component of filament activation at zero load was detected, implying an independent mechanism of partial filament activation. X‐ray interference measurements indicated a switch‐like change in myosin motor conformation at the start of force development, accompanied by transient disordering of motors in the regions of the myosin filament near its midpoint, suggesting that filament zonal dynamics also play a role in its activation. [Image: see text] KEY POINTS: Activation of myosin filaments in extensor digitorum longus muscles of the mouse is delayed by imposing rapid shortening from the start of stimulation. Stress is the major mechanism of myosin filament activation in these muscles, but there is a small component of filament activation during electrical stimulation at zero stress. Myosin motors switch rapidly from the folded inhibited conformation to the actin‐attached force‐generating conformation early in force development. John Wiley and Sons Inc. 2022-08-14 2022-09-01 /pmc/articles/PMC9544795/ /pubmed/35912434 http://dx.doi.org/10.1113/JP283048 Text en © 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Muscle
Hill, Cameron
Brunello, Elisabetta
Fusi, Luca
Ovejero, Jesús Garcia
Irving, Malcolm
Activation of the myosin motors in fast‐twitch muscle of the mouse is controlled by mechano‐sensing in the myosin filaments
title Activation of the myosin motors in fast‐twitch muscle of the mouse is controlled by mechano‐sensing in the myosin filaments
title_full Activation of the myosin motors in fast‐twitch muscle of the mouse is controlled by mechano‐sensing in the myosin filaments
title_fullStr Activation of the myosin motors in fast‐twitch muscle of the mouse is controlled by mechano‐sensing in the myosin filaments
title_full_unstemmed Activation of the myosin motors in fast‐twitch muscle of the mouse is controlled by mechano‐sensing in the myosin filaments
title_short Activation of the myosin motors in fast‐twitch muscle of the mouse is controlled by mechano‐sensing in the myosin filaments
title_sort activation of the myosin motors in fast‐twitch muscle of the mouse is controlled by mechano‐sensing in the myosin filaments
topic Muscle
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544795/
https://www.ncbi.nlm.nih.gov/pubmed/35912434
http://dx.doi.org/10.1113/JP283048
work_keys_str_mv AT hillcameron activationofthemyosinmotorsinfasttwitchmuscleofthemouseiscontrolledbymechanosensinginthemyosinfilaments
AT brunelloelisabetta activationofthemyosinmotorsinfasttwitchmuscleofthemouseiscontrolledbymechanosensinginthemyosinfilaments
AT fusiluca activationofthemyosinmotorsinfasttwitchmuscleofthemouseiscontrolledbymechanosensinginthemyosinfilaments
AT ovejerojesusgarcia activationofthemyosinmotorsinfasttwitchmuscleofthemouseiscontrolledbymechanosensinginthemyosinfilaments
AT irvingmalcolm activationofthemyosinmotorsinfasttwitchmuscleofthemouseiscontrolledbymechanosensinginthemyosinfilaments