Cargando…
Mix‐Tool: An Edge‐of‐Field Approach to Predict Pesticide Mixtures of Concern in Surface Water From Agricultural Crops
Current regulation on the authorization of plant protection products (PPPs) in the European Union is limited to the evaluation of ecological risks for the single active substances they contain. However, plant protection treatments in agriculture often consist of PPPs already containing more than one...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544912/ https://www.ncbi.nlm.nih.gov/pubmed/35579390 http://dx.doi.org/10.1002/etc.5363 |
Sumario: | Current regulation on the authorization of plant protection products (PPPs) in the European Union is limited to the evaluation of ecological risks for the single active substances they contain. However, plant protection treatments in agriculture often consist of PPPs already containing more than one active substance; moreover, each cropped field receives multiple applications per year, leading to complex pesticide mixtures in the environment. Different transport processes lead to a multitude of heterogeneous and potentially toxic substances that, for example, may reach water bodies and act simultaneously on natural freshwater ecosystems. In this context, the development of methodologies and tools to manage risks of pesticides mixtures is imperative to improve the current ecological risk assessment procedures and to avoid further deterioration of ecological quality of natural resources. The present study suggests new procedures for identifying pesticide mixtures of potential concern released from agricultural crops in surface water. The approach follows the European Union regulatory context for the authorization of PPPs in the market (edge‐of field risk assessment) and requires the use of Forum for the Co‐ordination of pesticide fate models and their Use (FOCUS) models (Step 3 and 4) for calculating the concentrations in surface water of mixture components on a daily basis. Moreover, it uses concentration addition models to calculate the toxic potency of the pesticide mixtures released by a treated crop. To implement this procedure, we developed a simple Microsoft‐Excel‐based tool. We also considered two case studies (maize and apple tree), representative of Italian agricultural scenarios for annual and perennial crops. Moreover, we compared results with 3 years of monitoring data of surface water bodies of the Lombardia region (northern Italy) where the two crops are largely present. Environ Toxicol Chem 2022;41:2028–2038. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. |
---|