Cargando…
Impact of an artificial intelligence deep‐learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study
BACKGROUND: Recently, computed tomography (CT) manufacturers have developed deep‐learning‐based reconstruction algorithms to compensate for the limitations of iterative reconstruction (IR) algorithms, such as image smoothing and the spatial resolution's dependence on contrast and dose levels. P...
Autores principales: | Greffier, Joël, Si‐Mohamed, Salim, Frandon, Julien, Loisy, Maeliss, de Oliveira, Fabien, Beregi, Jean Paul, Dabli, Djamel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544990/ https://www.ncbi.nlm.nih.gov/pubmed/35696272 http://dx.doi.org/10.1002/mp.15807 |
Ejemplares similares
-
Creation of an anthropomorphic CT head phantom for verification of image segmentation
por: Holmes, Robin B., et al.
Publicado: (2020) -
Patient‐based 4D digital breast phantom for perfusion contrast‐enhanced breast CT imaging
por: Caballo, Marco, et al.
Publicado: (2018) -
A multi‐modality physical phantom for mimicking tumor heterogeneity patterns in PET/CT and PET/MRI
por: Valladares, Alejandra, et al.
Publicado: (2022) -
Noise reduction profile: A new method for evaluation of noise reduction techniques in CT
por: Hasegawa, Akira, et al.
Publicado: (2021) -
CT metal artifact reduction algorithms: Toward a framework for objective performance assessment
por: Vaishnav, J. Y., et al.
Publicado: (2020)