Cargando…

Biofabrication approaches and regulatory framework of metastatic tumor‐on‐a‐chip models for precision oncology

The complexity of the tumor microenvironment (TME) together with the development of the metastatic process are the main reasons for the failure of conventional anticancer treatment. In recent years, there is an increasing need to advance toward advanced in vitro models of cancer mimicking TME and si...

Descripción completa

Detalles Bibliográficos
Autores principales: Nieto, Daniel, Jiménez, Gema, Moroni, Lorenzo, López‐Ruiz, Elena, Gálvez‐Martín, Patricia, Marchal, Juan Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9545141/
https://www.ncbi.nlm.nih.gov/pubmed/35707911
http://dx.doi.org/10.1002/med.21914
Descripción
Sumario:The complexity of the tumor microenvironment (TME) together with the development of the metastatic process are the main reasons for the failure of conventional anticancer treatment. In recent years, there is an increasing need to advance toward advanced in vitro models of cancer mimicking TME and simulating metastasis to understand the associated mechanisms that are still unknown, and to be able to develop personalized therapy. In this review, the commonly used alternatives and latest advances in biofabrication of tumor‐on‐chips, which allow the generation of the most sophisticated and optimized models for recapitulating the tumor process, are presented. In addition, the advances that have allowed these new models in the area of metastasis, cancer stem cells, and angiogenesis are summarized, as well as the recent integration of multiorgan‐on‐a‐chip systems to recapitulate natural metastasis and pharmacological screening against it. We also analyze, for the first time in the literature, the normative and regulatory framework in which these models could potentially be found, as well as the requirements and processes that must be fulfilled to be commercially implemented as in vitro study model. Moreover, we are focused on the possible regulatory pathways for their clinical application in precision medicine and decision making through the generation of personalized models with patient samples. In conclusion, this review highlights the synergistic combination of three‐dimensional bioprinting systems with the novel tumor/metastasis/multiorgan‐on‐a‐chip systems to generate models for both basic research and clinical applications to have devices useful for personalized oncology.