Cargando…
On the bias of complete‐ and shifting‐case meta‐regressions with missing covariates
Missing covariates is a common issue when fitting meta‐regression models. Standard practice for handling missing covariates tends to involve one of two approaches. In a complete‐case analysis, effect sizes for which relevant covariates are missing are omitted from model estimation. Alternatively, re...
Autores principales: | Schauer, Jacob M., Lee, Jihyun, Diaz, Karina, Pigott, Therese D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9545321/ https://www.ncbi.nlm.nih.gov/pubmed/35343067 http://dx.doi.org/10.1002/jrsm.1558 |
Ejemplares similares
-
Logistic regression with missing values in the covariates
por: Vach, Werner
Publicado: (1994) -
A Bayesian Approach Towards Missing Covariate Data in Multilevel Latent Regression Models
por: Aßmann, Christian, et al.
Publicado: (2022) -
Covariance regression with random forests
por: Alakus, Cansu, et al.
Publicado: (2023) -
Graphs of study contributions and covariate distributions for network meta‐regression
por: Donegan, Sarah, et al.
Publicado: (2018) -
Missing covariates in competing risks analysis
por: Bartlett, Jonathan W., et al.
Publicado: (2016)