Cargando…
Modeling the underlying biological processes in Alzheimer's disease using a multivariate competing risk joint model
Many clinical trials repeatedly measure several longitudinal outcomes on patients. Patient follow‐up can discontinue due to an outcome‐dependent event, such as clinical diagnosis, death, or dropout. Joint modeling is a popular choice for the analysis of this type of data. Using example data from a p...
Autores principales: | van Oudenhoven, Floor M., Swinkels, Sophie H. N., Hartmann, Tobias, Rizopoulos, Dimitris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9545329/ https://www.ncbi.nlm.nih.gov/pubmed/35582814 http://dx.doi.org/10.1002/sim.9425 |
Ejemplares similares
-
A competing risk joint model for dealing with different types of missing data in an intervention trial in prodromal Alzheimer’s disease
por: van Oudenhoven, Floor M., et al.
Publicado: (2021) -
Correction: A competing risk joint model for dealing with different types of missing data in an intervention trial in prodromal Alzheimer’s disease
por: van Oudenhoven, Floor M., et al.
Publicado: (2023) -
Using joint models to disentangle intervention effect types and baseline confounding: an application within an intervention study in prodromal Alzheimer’s disease with Fortasyn Connect
por: van Oudenhoven, Floor M., et al.
Publicado: (2019) -
A marginal estimate for the overall treatment effect on a survival outcome within the joint modeling framework
por: van Oudenhoven, Floor M., et al.
Publicado: (2020) -
Joint models for longitudinal and time-to-event data : with applications in R
por: Rizopoulos, Dimitris
Publicado: (2012)