Cargando…

Bumetanide for neonatal seizures: No light in the pharmacokinetic/dynamic tunnel

In his editorial, Kevin Staley criticizes our recent work demonstrating the lack of effect of bumetanide in a novel model of neonatal seizures. The main points in our response are that (1) our work is on an asphyxia model, not one on "hypercarbia only"; (2) clinically relevant parenteral d...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaila, Kai, Löscher, Wolfgang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9545618/
https://www.ncbi.nlm.nih.gov/pubmed/35524446
http://dx.doi.org/10.1111/epi.17279
Descripción
Sumario:In his editorial, Kevin Staley criticizes our recent work demonstrating the lack of effect of bumetanide in a novel model of neonatal seizures. The main points in our response are that (1) our work is on an asphyxia model, not one on "hypercarbia only"; (2) clinically relevant parenteral doses of bumetanide applied in vivo lead to concentrations in the brain parenchyma that are at least an order of magnitude lower than what would be sufficient to exert any direct effect—even a transient one—on neuronal functions, including neonatal seizures; and (3) moreover, bumetanide's molecular target in the brain is the Na‐K‐2Cl cotransporter NKCC1, which has vital functions in neurons, astrocytes, and oligodendrocytes as well as microglia. This would make it impossible even for highly brain‐permeant NKCC1 blockers to specifically target depolarizing and excitatory actions of γ‐aminobutyric acid in principal neurons of the brain, which is postulated as the rationale of clinical trials on neonatal seizures.