Cargando…

The relationship between hard and soft tissue structures of the eye in extant lizards

The sizes of the eye structures, such as the lens diameter and the axial length, are important factors for the visual performance and are considered to be related to the mode of life. Although the size of these soft structures cannot be directly observed in fossil taxa, such information may be obtai...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamashita, Momo, Tsuihiji, Takanobu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9545706/
https://www.ncbi.nlm.nih.gov/pubmed/35833614
http://dx.doi.org/10.1002/jmor.21495
Descripción
Sumario:The sizes of the eye structures, such as the lens diameter and the axial length, are important factors for the visual performance and are considered to be related to the mode of life. Although the size of these soft structures cannot be directly observed in fossil taxa, such information may be obtained from measuring size and morphology of the bony scleral ossicle ring, which is present in the eyes of extant saurospids, excluding crocodiles and snakes, and is variously preserved in fossil taxa. However, there have been only a few studies investigating the relationships between the size, the scleral ossicle ring, and soft structures of the eye. We investigated such relationships among the eye structures in extant Squamata, to establish the basis for inferring the size of the soft structures in the eye in fossil squamates. Three‐dimensional morphological data on the eye and head region of 59 lizard species covering most major clades were collected using micro‐computed tomography scanners. Strong correlations were found between the internal and external diameters of the scleral ossicle ring and soft structures. The tight correlations found here will allow reliable estimations of the sizes of soft structures and inferences on the visual performance and mode of life in fossil squamates, based on the diameters of their preserved scleral ossicle rings. Furthermore, the comparison of the allometric relationships between structures in squamates eyes with those in avian eyes suggest the possibility that the similarities of these structures closely reflect the mechanism of accommodation.