Cargando…
FReSCO: Flow Reconstruction and Segmentation for low‐latency Cardiac Output monitoring using deep artifact suppression and segmentation
PURPOSE: Real‐time monitoring of cardiac output (CO) requires low‐latency reconstruction and segmentation of real‐time phase‐contrast MR, which has previously been difficult to perform. Here we propose a deep learning framework for “FReSCO” (Flow Reconstruction and Segmentation for low latency Cardi...
Autores principales: | Jaubert, Olivier, Montalt‐Tordera, Javier, Brown, James, Knight, Daniel, Arridge, Simon, Steeden, Jennifer, Muthurangu, Vivek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9545927/ https://www.ncbi.nlm.nih.gov/pubmed/35781891 http://dx.doi.org/10.1002/mrm.29374 |
Ejemplares similares
-
Real‐time deep artifact suppression using recurrent U‐Nets for low‐latency cardiac MRI
por: Jaubert, Olivier, et al.
Publicado: (2021) -
Real‐time cardiovascular MR with spatio‐temporal artifact suppression using deep learning–proof of concept in congenital heart disease
por: Hauptmann, Andreas, et al.
Publicado: (2018) -
Automatic segmentation of the great arteries for computational hemodynamic assessment
por: Montalt-Tordera, Javier, et al.
Publicado: (2022) -
Reducing Contrast Agent Dose in Cardiovascular MR Angiography with Deep Learning
por: Montalt‐Tordera, Javier, et al.
Publicado: (2021) -
Rapid whole-heart CMR with single volume super-resolution
por: Steeden, Jennifer A., et al.
Publicado: (2020)