Cargando…
Mixed vine copula flows for flexible modeling of neural dependencies
Recordings of complex neural population responses provide a unique opportunity for advancing our understanding of neural information processing at multiple scales and improving performance of brain computer interfaces. However, most existing analytical techniques fall short of capturing the complexi...
Autores principales: | Mitskopoulos, Lazaros, Amvrosiadis, Theoklitos, Onken, Arno |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546167/ https://www.ncbi.nlm.nih.gov/pubmed/36213754 http://dx.doi.org/10.3389/fnins.2022.910122 |
Ejemplares similares
-
Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships
por: Kudryashova, Nina, et al.
Publicado: (2022) -
Discovering Low-Dimensional Descriptions of Multineuronal Dependencies
por: Mitskopoulos, Lazaros, et al.
Publicado: (2023) -
Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas
por: Bedford, Tim, et al.
Publicado: (2015) -
Analyzing dependent data with vine copulas: a practical guide with R
por: Czado, Claudia
Publicado: (2019) -
Novel pruning and truncating of the mixture of vine copula clustering models
por: Alanazi, Fadhah Amer
Publicado: (2022)