Cargando…
Single-molecule investigations of single-chain cellulose biosynthesis
Cellulose biosynthesis in sessile bacterial colonies originates in the membrane-integrated bacterial cellulose synthase (Bcs) AB complex. We utilize optical tweezers to measure single-strand cellulose biosynthesis by BcsAB from Rhodobacter sphaeroides. Synthesis depends on uridine diphosphate glucos...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546554/ https://www.ncbi.nlm.nih.gov/pubmed/36161928 http://dx.doi.org/10.1073/pnas.2122770119 |
_version_ | 1784805066298884096 |
---|---|
author | Hilton, Mark A. Manning, Harris W. Górniak, Ireneusz Brady, Sonia K. Johnson, Madeline M. Zimmer, Jochen Lang, Matthew J. |
author_facet | Hilton, Mark A. Manning, Harris W. Górniak, Ireneusz Brady, Sonia K. Johnson, Madeline M. Zimmer, Jochen Lang, Matthew J. |
author_sort | Hilton, Mark A. |
collection | PubMed |
description | Cellulose biosynthesis in sessile bacterial colonies originates in the membrane-integrated bacterial cellulose synthase (Bcs) AB complex. We utilize optical tweezers to measure single-strand cellulose biosynthesis by BcsAB from Rhodobacter sphaeroides. Synthesis depends on uridine diphosphate glucose, Mg(2+), and cyclic diguanosine monophosphate, with the last displaying a retention time of ∼80 min. Below a stall force of 12.7 pN, biosynthesis is relatively insensitive to force and proceeds at a rate of one glucose addition every 2.5 s at room temperature, increasing to two additions per second at 37°. At low forces, conformational hopping is observed. Single-strand cellulose stretching unveiled a persistence length of 6.2 nm, an axial stiffness of 40.7 pN, and an ability for complexes to maintain a tight grip, with forces nearing 100 pN. Stretching experiments exhibited hysteresis, suggesting that cellulose microstructure underpinning robust biofilms begins to form during synthesis. Cellohexaose spontaneously binds to nascent single cellulose strands, impacting polymer mechanical properties and increasing BcsAB activity. |
format | Online Article Text |
id | pubmed-9546554 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-95465542022-10-08 Single-molecule investigations of single-chain cellulose biosynthesis Hilton, Mark A. Manning, Harris W. Górniak, Ireneusz Brady, Sonia K. Johnson, Madeline M. Zimmer, Jochen Lang, Matthew J. Proc Natl Acad Sci U S A Biological Sciences Cellulose biosynthesis in sessile bacterial colonies originates in the membrane-integrated bacterial cellulose synthase (Bcs) AB complex. We utilize optical tweezers to measure single-strand cellulose biosynthesis by BcsAB from Rhodobacter sphaeroides. Synthesis depends on uridine diphosphate glucose, Mg(2+), and cyclic diguanosine monophosphate, with the last displaying a retention time of ∼80 min. Below a stall force of 12.7 pN, biosynthesis is relatively insensitive to force and proceeds at a rate of one glucose addition every 2.5 s at room temperature, increasing to two additions per second at 37°. At low forces, conformational hopping is observed. Single-strand cellulose stretching unveiled a persistence length of 6.2 nm, an axial stiffness of 40.7 pN, and an ability for complexes to maintain a tight grip, with forces nearing 100 pN. Stretching experiments exhibited hysteresis, suggesting that cellulose microstructure underpinning robust biofilms begins to form during synthesis. Cellohexaose spontaneously binds to nascent single cellulose strands, impacting polymer mechanical properties and increasing BcsAB activity. National Academy of Sciences 2022-09-26 2022-10-04 /pmc/articles/PMC9546554/ /pubmed/36161928 http://dx.doi.org/10.1073/pnas.2122770119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Biological Sciences Hilton, Mark A. Manning, Harris W. Górniak, Ireneusz Brady, Sonia K. Johnson, Madeline M. Zimmer, Jochen Lang, Matthew J. Single-molecule investigations of single-chain cellulose biosynthesis |
title | Single-molecule investigations of single-chain cellulose biosynthesis |
title_full | Single-molecule investigations of single-chain cellulose biosynthesis |
title_fullStr | Single-molecule investigations of single-chain cellulose biosynthesis |
title_full_unstemmed | Single-molecule investigations of single-chain cellulose biosynthesis |
title_short | Single-molecule investigations of single-chain cellulose biosynthesis |
title_sort | single-molecule investigations of single-chain cellulose biosynthesis |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546554/ https://www.ncbi.nlm.nih.gov/pubmed/36161928 http://dx.doi.org/10.1073/pnas.2122770119 |
work_keys_str_mv | AT hiltonmarka singlemoleculeinvestigationsofsinglechaincellulosebiosynthesis AT manningharrisw singlemoleculeinvestigationsofsinglechaincellulosebiosynthesis AT gorniakireneusz singlemoleculeinvestigationsofsinglechaincellulosebiosynthesis AT bradysoniak singlemoleculeinvestigationsofsinglechaincellulosebiosynthesis AT johnsonmadelinem singlemoleculeinvestigationsofsinglechaincellulosebiosynthesis AT zimmerjochen singlemoleculeinvestigationsofsinglechaincellulosebiosynthesis AT langmatthewj singlemoleculeinvestigationsofsinglechaincellulosebiosynthesis |