Cargando…

Single-molecule investigations of single-chain cellulose biosynthesis

Cellulose biosynthesis in sessile bacterial colonies originates in the membrane-integrated bacterial cellulose synthase (Bcs) AB complex. We utilize optical tweezers to measure single-strand cellulose biosynthesis by BcsAB from Rhodobacter sphaeroides. Synthesis depends on uridine diphosphate glucos...

Descripción completa

Detalles Bibliográficos
Autores principales: Hilton, Mark A., Manning, Harris W., Górniak, Ireneusz, Brady, Sonia K., Johnson, Madeline M., Zimmer, Jochen, Lang, Matthew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546554/
https://www.ncbi.nlm.nih.gov/pubmed/36161928
http://dx.doi.org/10.1073/pnas.2122770119
_version_ 1784805066298884096
author Hilton, Mark A.
Manning, Harris W.
Górniak, Ireneusz
Brady, Sonia K.
Johnson, Madeline M.
Zimmer, Jochen
Lang, Matthew J.
author_facet Hilton, Mark A.
Manning, Harris W.
Górniak, Ireneusz
Brady, Sonia K.
Johnson, Madeline M.
Zimmer, Jochen
Lang, Matthew J.
author_sort Hilton, Mark A.
collection PubMed
description Cellulose biosynthesis in sessile bacterial colonies originates in the membrane-integrated bacterial cellulose synthase (Bcs) AB complex. We utilize optical tweezers to measure single-strand cellulose biosynthesis by BcsAB from Rhodobacter sphaeroides. Synthesis depends on uridine diphosphate glucose, Mg(2+), and cyclic diguanosine monophosphate, with the last displaying a retention time of ∼80 min. Below a stall force of 12.7 pN, biosynthesis is relatively insensitive to force and proceeds at a rate of one glucose addition every 2.5 s at room temperature, increasing to two additions per second at 37°. At low forces, conformational hopping is observed. Single-strand cellulose stretching unveiled a persistence length of 6.2 nm, an axial stiffness of 40.7 pN, and an ability for complexes to maintain a tight grip, with forces nearing 100 pN. Stretching experiments exhibited hysteresis, suggesting that cellulose microstructure underpinning robust biofilms begins to form during synthesis. Cellohexaose spontaneously binds to nascent single cellulose strands, impacting polymer mechanical properties and increasing BcsAB activity.
format Online
Article
Text
id pubmed-9546554
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-95465542022-10-08 Single-molecule investigations of single-chain cellulose biosynthesis Hilton, Mark A. Manning, Harris W. Górniak, Ireneusz Brady, Sonia K. Johnson, Madeline M. Zimmer, Jochen Lang, Matthew J. Proc Natl Acad Sci U S A Biological Sciences Cellulose biosynthesis in sessile bacterial colonies originates in the membrane-integrated bacterial cellulose synthase (Bcs) AB complex. We utilize optical tweezers to measure single-strand cellulose biosynthesis by BcsAB from Rhodobacter sphaeroides. Synthesis depends on uridine diphosphate glucose, Mg(2+), and cyclic diguanosine monophosphate, with the last displaying a retention time of ∼80 min. Below a stall force of 12.7 pN, biosynthesis is relatively insensitive to force and proceeds at a rate of one glucose addition every 2.5 s at room temperature, increasing to two additions per second at 37°. At low forces, conformational hopping is observed. Single-strand cellulose stretching unveiled a persistence length of 6.2 nm, an axial stiffness of 40.7 pN, and an ability for complexes to maintain a tight grip, with forces nearing 100 pN. Stretching experiments exhibited hysteresis, suggesting that cellulose microstructure underpinning robust biofilms begins to form during synthesis. Cellohexaose spontaneously binds to nascent single cellulose strands, impacting polymer mechanical properties and increasing BcsAB activity. National Academy of Sciences 2022-09-26 2022-10-04 /pmc/articles/PMC9546554/ /pubmed/36161928 http://dx.doi.org/10.1073/pnas.2122770119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Biological Sciences
Hilton, Mark A.
Manning, Harris W.
Górniak, Ireneusz
Brady, Sonia K.
Johnson, Madeline M.
Zimmer, Jochen
Lang, Matthew J.
Single-molecule investigations of single-chain cellulose biosynthesis
title Single-molecule investigations of single-chain cellulose biosynthesis
title_full Single-molecule investigations of single-chain cellulose biosynthesis
title_fullStr Single-molecule investigations of single-chain cellulose biosynthesis
title_full_unstemmed Single-molecule investigations of single-chain cellulose biosynthesis
title_short Single-molecule investigations of single-chain cellulose biosynthesis
title_sort single-molecule investigations of single-chain cellulose biosynthesis
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546554/
https://www.ncbi.nlm.nih.gov/pubmed/36161928
http://dx.doi.org/10.1073/pnas.2122770119
work_keys_str_mv AT hiltonmarka singlemoleculeinvestigationsofsinglechaincellulosebiosynthesis
AT manningharrisw singlemoleculeinvestigationsofsinglechaincellulosebiosynthesis
AT gorniakireneusz singlemoleculeinvestigationsofsinglechaincellulosebiosynthesis
AT bradysoniak singlemoleculeinvestigationsofsinglechaincellulosebiosynthesis
AT johnsonmadelinem singlemoleculeinvestigationsofsinglechaincellulosebiosynthesis
AT zimmerjochen singlemoleculeinvestigationsofsinglechaincellulosebiosynthesis
AT langmatthewj singlemoleculeinvestigationsofsinglechaincellulosebiosynthesis