Cargando…
Elastic properties and shape of the Piezo dome underlying its mechanosensory function
We show in the companion paper that the free membrane shape of lipid bilayer vesicles containing the mechanosensitive ion channel Piezo can be predicted, with no free parameters, from membrane elasticity theory together with measurements of the protein geometry and vesicle size [C. A. Haselwandter,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546593/ https://www.ncbi.nlm.nih.gov/pubmed/36166476 http://dx.doi.org/10.1073/pnas.2208034119 |
_version_ | 1784805075953123328 |
---|---|
author | Haselwandter, Christoph A. Guo, Yusong R. Fu, Ziao MacKinnon, Roderick |
author_facet | Haselwandter, Christoph A. Guo, Yusong R. Fu, Ziao MacKinnon, Roderick |
author_sort | Haselwandter, Christoph A. |
collection | PubMed |
description | We show in the companion paper that the free membrane shape of lipid bilayer vesicles containing the mechanosensitive ion channel Piezo can be predicted, with no free parameters, from membrane elasticity theory together with measurements of the protein geometry and vesicle size [C. A. Haselwandter, Y. R. Guo, Z. Fu, R. MacKinnon, Proc. Natl. Acad. Sci. U.S.A., 10.1073/pnas.2208027119 (2022)]. Here we use these results to determine the force that the Piezo dome exerts on the free membrane and hence, that the free membrane exerts on the Piezo dome, for a range of vesicle sizes. From vesicle shape measurements alone, we thus obtain a force–distortion relationship for the Piezo dome, from which we deduce the Piezo dome’s intrinsic radius of curvature, [Formula: see text] nm, and bending stiffness, [Formula: see text] , in freestanding lipid bilayer membranes mimicking cell membranes. Applying these estimates to a spherical cap model of Piezo embedded in a lipid bilayer, we suggest that Piezo’s intrinsic curvature, surrounding membrane footprint, small stiffness, and large area are the key properties of Piezo that give rise to low-threshold, high-sensitivity mechanical gating. |
format | Online Article Text |
id | pubmed-9546593 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-95465932022-10-08 Elastic properties and shape of the Piezo dome underlying its mechanosensory function Haselwandter, Christoph A. Guo, Yusong R. Fu, Ziao MacKinnon, Roderick Proc Natl Acad Sci U S A Biological Sciences We show in the companion paper that the free membrane shape of lipid bilayer vesicles containing the mechanosensitive ion channel Piezo can be predicted, with no free parameters, from membrane elasticity theory together with measurements of the protein geometry and vesicle size [C. A. Haselwandter, Y. R. Guo, Z. Fu, R. MacKinnon, Proc. Natl. Acad. Sci. U.S.A., 10.1073/pnas.2208027119 (2022)]. Here we use these results to determine the force that the Piezo dome exerts on the free membrane and hence, that the free membrane exerts on the Piezo dome, for a range of vesicle sizes. From vesicle shape measurements alone, we thus obtain a force–distortion relationship for the Piezo dome, from which we deduce the Piezo dome’s intrinsic radius of curvature, [Formula: see text] nm, and bending stiffness, [Formula: see text] , in freestanding lipid bilayer membranes mimicking cell membranes. Applying these estimates to a spherical cap model of Piezo embedded in a lipid bilayer, we suggest that Piezo’s intrinsic curvature, surrounding membrane footprint, small stiffness, and large area are the key properties of Piezo that give rise to low-threshold, high-sensitivity mechanical gating. National Academy of Sciences 2022-09-27 2022-10-04 /pmc/articles/PMC9546593/ /pubmed/36166476 http://dx.doi.org/10.1073/pnas.2208034119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Haselwandter, Christoph A. Guo, Yusong R. Fu, Ziao MacKinnon, Roderick Elastic properties and shape of the Piezo dome underlying its mechanosensory function |
title | Elastic properties and shape of the Piezo dome underlying its mechanosensory function |
title_full | Elastic properties and shape of the Piezo dome underlying its mechanosensory function |
title_fullStr | Elastic properties and shape of the Piezo dome underlying its mechanosensory function |
title_full_unstemmed | Elastic properties and shape of the Piezo dome underlying its mechanosensory function |
title_short | Elastic properties and shape of the Piezo dome underlying its mechanosensory function |
title_sort | elastic properties and shape of the piezo dome underlying its mechanosensory function |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546593/ https://www.ncbi.nlm.nih.gov/pubmed/36166476 http://dx.doi.org/10.1073/pnas.2208034119 |
work_keys_str_mv | AT haselwandterchristopha elasticpropertiesandshapeofthepiezodomeunderlyingitsmechanosensoryfunction AT guoyusongr elasticpropertiesandshapeofthepiezodomeunderlyingitsmechanosensoryfunction AT fuziao elasticpropertiesandshapeofthepiezodomeunderlyingitsmechanosensoryfunction AT mackinnonroderick elasticpropertiesandshapeofthepiezodomeunderlyingitsmechanosensoryfunction |