Cargando…

Dipole-driven interlude of mesomorphism in polyelectrolyte solutions

Uniformly charged polyelectrolyte molecules disperse uniformly in aqueous electrolyte solutions, due to electrostatic repulsion between them. In stark contrast to this well-established result of homogeneous polyelectrolyte solutions, we report a phenomenon where an aqueous solution of positively cha...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Di, Muthukumar, Murugappan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546595/
https://www.ncbi.nlm.nih.gov/pubmed/36161915
http://dx.doi.org/10.1073/pnas.2204163119
_version_ 1784805076421836800
author Jia, Di
Muthukumar, Murugappan
author_facet Jia, Di
Muthukumar, Murugappan
author_sort Jia, Di
collection PubMed
description Uniformly charged polyelectrolyte molecules disperse uniformly in aqueous electrolyte solutions, due to electrostatic repulsion between them. In stark contrast to this well-established result of homogeneous polyelectrolyte solutions, we report a phenomenon where an aqueous solution of positively charged poly(L-lysine) (PLL) exhibits precipitation of similarly charged macromolecules at low ionic strength and a homogeneous solution at very high ionic strength, with a stable mesomorphic state of spherical aggregates as an interlude between these two limits. The precipitation at lower ionic strengths that is orthogonal to the standard polyelectrolyte behavior and the emergence of the mesomorphic state are triggered by the presence of a monovalent small organic anion, acrylate, in the electrolyte solution. Using light scattering, we find that the hydrodynamic radius R(h) of isolated PLL chains shrinks upon a decrease in electrolyte (NaBr) concentration, exhibiting the “anti-polyelectrolyte effect.” In addition, R(h) of the aggregates in the mesomorphic state depends on PLL concentration c(p) according to the scaling law, [Formula: see text]. Furthermore, at higher PLL concentration, the mesomorphic aggregates disassemble by a self-poisoning mechanism. We conjecture that all these findings can be attributed to both intra- and interchain dipolar interactions arising from the transformation of polycationic PLL into a physical polyzwitterionic PLL at higher concentrations of acrylate. The reported phenomenon of PLL exhibiting dipole-directed assembly of mesomorphic states and the anti-polyelectrolyte effect are of vital importance toward understanding more complex situations such as coacervation and formation of biomolecular condensates.
format Online
Article
Text
id pubmed-9546595
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-95465952023-03-26 Dipole-driven interlude of mesomorphism in polyelectrolyte solutions Jia, Di Muthukumar, Murugappan Proc Natl Acad Sci U S A Physical Sciences Uniformly charged polyelectrolyte molecules disperse uniformly in aqueous electrolyte solutions, due to electrostatic repulsion between them. In stark contrast to this well-established result of homogeneous polyelectrolyte solutions, we report a phenomenon where an aqueous solution of positively charged poly(L-lysine) (PLL) exhibits precipitation of similarly charged macromolecules at low ionic strength and a homogeneous solution at very high ionic strength, with a stable mesomorphic state of spherical aggregates as an interlude between these two limits. The precipitation at lower ionic strengths that is orthogonal to the standard polyelectrolyte behavior and the emergence of the mesomorphic state are triggered by the presence of a monovalent small organic anion, acrylate, in the electrolyte solution. Using light scattering, we find that the hydrodynamic radius R(h) of isolated PLL chains shrinks upon a decrease in electrolyte (NaBr) concentration, exhibiting the “anti-polyelectrolyte effect.” In addition, R(h) of the aggregates in the mesomorphic state depends on PLL concentration c(p) according to the scaling law, [Formula: see text]. Furthermore, at higher PLL concentration, the mesomorphic aggregates disassemble by a self-poisoning mechanism. We conjecture that all these findings can be attributed to both intra- and interchain dipolar interactions arising from the transformation of polycationic PLL into a physical polyzwitterionic PLL at higher concentrations of acrylate. The reported phenomenon of PLL exhibiting dipole-directed assembly of mesomorphic states and the anti-polyelectrolyte effect are of vital importance toward understanding more complex situations such as coacervation and formation of biomolecular condensates. National Academy of Sciences 2022-09-26 2022-10-04 /pmc/articles/PMC9546595/ /pubmed/36161915 http://dx.doi.org/10.1073/pnas.2204163119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Jia, Di
Muthukumar, Murugappan
Dipole-driven interlude of mesomorphism in polyelectrolyte solutions
title Dipole-driven interlude of mesomorphism in polyelectrolyte solutions
title_full Dipole-driven interlude of mesomorphism in polyelectrolyte solutions
title_fullStr Dipole-driven interlude of mesomorphism in polyelectrolyte solutions
title_full_unstemmed Dipole-driven interlude of mesomorphism in polyelectrolyte solutions
title_short Dipole-driven interlude of mesomorphism in polyelectrolyte solutions
title_sort dipole-driven interlude of mesomorphism in polyelectrolyte solutions
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546595/
https://www.ncbi.nlm.nih.gov/pubmed/36161915
http://dx.doi.org/10.1073/pnas.2204163119
work_keys_str_mv AT jiadi dipoledriveninterludeofmesomorphisminpolyelectrolytesolutions
AT muthukumarmurugappan dipoledriveninterludeofmesomorphisminpolyelectrolytesolutions