Cargando…

Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification

Modulation classification is one of the essential requirements in the various cognitive radio applications where prior information about the incoming signal is unknown. The modulation classification using a pattern recognition approach can be achieved in 2 modules: first, parameters are extracted fr...

Descripción completa

Detalles Bibliográficos
Autores principales: AlJubayrin, Saad, Sarfraz, Mubashar, Ghauri, Sajjad A., Amirzada, Muhammad Rizwan, Mezgebo Kebedew, Teweldebrhan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546654/
https://www.ncbi.nlm.nih.gov/pubmed/36210980
http://dx.doi.org/10.1155/2022/9464633
_version_ 1784805090574467072
author AlJubayrin, Saad
Sarfraz, Mubashar
Ghauri, Sajjad A.
Amirzada, Muhammad Rizwan
Mezgebo Kebedew, Teweldebrhan
author_facet AlJubayrin, Saad
Sarfraz, Mubashar
Ghauri, Sajjad A.
Amirzada, Muhammad Rizwan
Mezgebo Kebedew, Teweldebrhan
author_sort AlJubayrin, Saad
collection PubMed
description Modulation classification is one of the essential requirements in the various cognitive radio applications where prior information about the incoming signal is unknown. The modulation classification using a pattern recognition approach can be achieved in 2 modules: first, parameters are extracted from the noisy signal, and then feature selection is carried out using a Gabor filter network (GFN). In the second module, features are exploited for classification purposes. The modulation formats considered for the purpose of classification are BPSK, QPSK, 8PSK, 16PSK, 64PSK, 4FSK, 8FSK, 16FSK, QAM, 8QAM, 16QAM, 32QAM, and 64QAM. The Gabor filter parameters and weights of the adaptive filter are attuned using the Delta rule and recursive least square (RLS) algorithm until the cost function is minimized. In the end, the artificial bee colony (ABC) algorithm is used to optimize the Gabor parameters as well as the classifier's performance. The simulation results show the supremacy of the proposed classifier structure.
format Online
Article
Text
id pubmed-9546654
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-95466542022-10-08 Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification AlJubayrin, Saad Sarfraz, Mubashar Ghauri, Sajjad A. Amirzada, Muhammad Rizwan Mezgebo Kebedew, Teweldebrhan Comput Intell Neurosci Research Article Modulation classification is one of the essential requirements in the various cognitive radio applications where prior information about the incoming signal is unknown. The modulation classification using a pattern recognition approach can be achieved in 2 modules: first, parameters are extracted from the noisy signal, and then feature selection is carried out using a Gabor filter network (GFN). In the second module, features are exploited for classification purposes. The modulation formats considered for the purpose of classification are BPSK, QPSK, 8PSK, 16PSK, 64PSK, 4FSK, 8FSK, 16FSK, QAM, 8QAM, 16QAM, 32QAM, and 64QAM. The Gabor filter parameters and weights of the adaptive filter are attuned using the Delta rule and recursive least square (RLS) algorithm until the cost function is minimized. In the end, the artificial bee colony (ABC) algorithm is used to optimize the Gabor parameters as well as the classifier's performance. The simulation results show the supremacy of the proposed classifier structure. Hindawi 2022-09-30 /pmc/articles/PMC9546654/ /pubmed/36210980 http://dx.doi.org/10.1155/2022/9464633 Text en Copyright © 2022 Saad AlJubayrin et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
AlJubayrin, Saad
Sarfraz, Mubashar
Ghauri, Sajjad A.
Amirzada, Muhammad Rizwan
Mezgebo Kebedew, Teweldebrhan
Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification
title Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification
title_full Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification
title_fullStr Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification
title_full_unstemmed Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification
title_short Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification
title_sort artificial bee colony based gabor parameters optimizer (abc-gpo) for modulation classification
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546654/
https://www.ncbi.nlm.nih.gov/pubmed/36210980
http://dx.doi.org/10.1155/2022/9464633
work_keys_str_mv AT aljubayrinsaad artificialbeecolonybasedgaborparametersoptimizerabcgpoformodulationclassification
AT sarfrazmubashar artificialbeecolonybasedgaborparametersoptimizerabcgpoformodulationclassification
AT ghaurisajjada artificialbeecolonybasedgaborparametersoptimizerabcgpoformodulationclassification
AT amirzadamuhammadrizwan artificialbeecolonybasedgaborparametersoptimizerabcgpoformodulationclassification
AT mezgebokebedewteweldebrhan artificialbeecolonybasedgaborparametersoptimizerabcgpoformodulationclassification