Cargando…
Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification
Modulation classification is one of the essential requirements in the various cognitive radio applications where prior information about the incoming signal is unknown. The modulation classification using a pattern recognition approach can be achieved in 2 modules: first, parameters are extracted fr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546654/ https://www.ncbi.nlm.nih.gov/pubmed/36210980 http://dx.doi.org/10.1155/2022/9464633 |
_version_ | 1784805090574467072 |
---|---|
author | AlJubayrin, Saad Sarfraz, Mubashar Ghauri, Sajjad A. Amirzada, Muhammad Rizwan Mezgebo Kebedew, Teweldebrhan |
author_facet | AlJubayrin, Saad Sarfraz, Mubashar Ghauri, Sajjad A. Amirzada, Muhammad Rizwan Mezgebo Kebedew, Teweldebrhan |
author_sort | AlJubayrin, Saad |
collection | PubMed |
description | Modulation classification is one of the essential requirements in the various cognitive radio applications where prior information about the incoming signal is unknown. The modulation classification using a pattern recognition approach can be achieved in 2 modules: first, parameters are extracted from the noisy signal, and then feature selection is carried out using a Gabor filter network (GFN). In the second module, features are exploited for classification purposes. The modulation formats considered for the purpose of classification are BPSK, QPSK, 8PSK, 16PSK, 64PSK, 4FSK, 8FSK, 16FSK, QAM, 8QAM, 16QAM, 32QAM, and 64QAM. The Gabor filter parameters and weights of the adaptive filter are attuned using the Delta rule and recursive least square (RLS) algorithm until the cost function is minimized. In the end, the artificial bee colony (ABC) algorithm is used to optimize the Gabor parameters as well as the classifier's performance. The simulation results show the supremacy of the proposed classifier structure. |
format | Online Article Text |
id | pubmed-9546654 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-95466542022-10-08 Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification AlJubayrin, Saad Sarfraz, Mubashar Ghauri, Sajjad A. Amirzada, Muhammad Rizwan Mezgebo Kebedew, Teweldebrhan Comput Intell Neurosci Research Article Modulation classification is one of the essential requirements in the various cognitive radio applications where prior information about the incoming signal is unknown. The modulation classification using a pattern recognition approach can be achieved in 2 modules: first, parameters are extracted from the noisy signal, and then feature selection is carried out using a Gabor filter network (GFN). In the second module, features are exploited for classification purposes. The modulation formats considered for the purpose of classification are BPSK, QPSK, 8PSK, 16PSK, 64PSK, 4FSK, 8FSK, 16FSK, QAM, 8QAM, 16QAM, 32QAM, and 64QAM. The Gabor filter parameters and weights of the adaptive filter are attuned using the Delta rule and recursive least square (RLS) algorithm until the cost function is minimized. In the end, the artificial bee colony (ABC) algorithm is used to optimize the Gabor parameters as well as the classifier's performance. The simulation results show the supremacy of the proposed classifier structure. Hindawi 2022-09-30 /pmc/articles/PMC9546654/ /pubmed/36210980 http://dx.doi.org/10.1155/2022/9464633 Text en Copyright © 2022 Saad AlJubayrin et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article AlJubayrin, Saad Sarfraz, Mubashar Ghauri, Sajjad A. Amirzada, Muhammad Rizwan Mezgebo Kebedew, Teweldebrhan Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification |
title | Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification |
title_full | Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification |
title_fullStr | Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification |
title_full_unstemmed | Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification |
title_short | Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification |
title_sort | artificial bee colony based gabor parameters optimizer (abc-gpo) for modulation classification |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546654/ https://www.ncbi.nlm.nih.gov/pubmed/36210980 http://dx.doi.org/10.1155/2022/9464633 |
work_keys_str_mv | AT aljubayrinsaad artificialbeecolonybasedgaborparametersoptimizerabcgpoformodulationclassification AT sarfrazmubashar artificialbeecolonybasedgaborparametersoptimizerabcgpoformodulationclassification AT ghaurisajjada artificialbeecolonybasedgaborparametersoptimizerabcgpoformodulationclassification AT amirzadamuhammadrizwan artificialbeecolonybasedgaborparametersoptimizerabcgpoformodulationclassification AT mezgebokebedewteweldebrhan artificialbeecolonybasedgaborparametersoptimizerabcgpoformodulationclassification |