Cargando…
Characterizing PTP4A3/PRL-3 as the Potential Prognostic Marker Gene for Liver Hepatocellular Carcinoma
BACKGROUND: A large number of cancer-related deaths in the world can be attributed to liver hepatocellular carcinoma (LIHC). The purpose of this study is to explore protein tyrosine phosphatase type IV A member 3 (PTP4A3/PRL-3) as a new and reliable biomarker to predict the prognosis of LIHC and det...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546693/ https://www.ncbi.nlm.nih.gov/pubmed/36213837 http://dx.doi.org/10.1155/2022/2717056 |
Sumario: | BACKGROUND: A large number of cancer-related deaths in the world can be attributed to liver hepatocellular carcinoma (LIHC). The purpose of this study is to explore protein tyrosine phosphatase type IV A member 3 (PTP4A3/PRL-3) as a new and reliable biomarker to predict the prognosis of LIHC and determine the potential therapeutic targets or drugs that can be used for treating LIHC. METHODS: We included three LIHC datasets with clinical information and expression profiles from public databases. The expression level of PTP4A3 was analyzed, and based on the results, the samples were divided into high- and low-expression groups. The Kaplan–Meier survival analysis method was used to determine the relationship between PTP4A3 and prognosis. The enrichment differences among the functional pathways associated with the high- and low-expression groups were determined using the gene set enrichment analysis (GSEA) method. Five methods were used to determine the differences among the tumor microenvironment in the low- and high-expression groups. The sensitivity of the low- and high-expression groups toward different drug treatment methods was predicted by analyzing the Tumor Immune Dysfunction and Exclusion (TIDE) scores and determining the biochemical half-maximal inhibitory concentration (IC50). RESULTS: The expression levels of the LIHC and adjacent samples were analyzed, and it was observed that the expression level of PTP4A3 in tumor tissue was significantly higher than the expression level of the same gene in the adjacent samples. It was also inferred that it might be a cancer-promoting gene. It was concluded that high-expression results in a significantly poor prognosis. The high-expression group was significantly enriched in the tumor-related pathways, such as the PI3K-AKT signaling pathway. In addition, the results obtained by conducting immune infiltration analysis revealed a significant positive correlation between some immune scores and the gene PTP4A3. The drug KIN001−135 and gene PTP4A3 were also found to correlate positively with each other. CP466722, Pyrimethamine, AKT inhibitor VIII, Embelin, Cisplatin, QS11, Bexarotene, and Midostaurin negatively correlated with PTP4A3 associated with the three datasets. Moreover, the drugs Cisplatin, QS11, Midostaurin, and CP466722 were more sensitive toward the high-expression group than the low PTP4A3 expression group. Significant differences were observed in these cases. CONCLUSION: PTP4A3/PRL-3 is potentially associated with the progression, metastasis, and invasion of LIHC. The prognosis of LIHC patients is negatively impacted by the high-expression levels of the gene. The results indicate that PTP4A3/PRL-3 is an important prognostic factor for LIHC and is a new potential prognostic detection target. The discovery of the 8 drugs that were negatively associated with PTP4A3 provided a new direction that can be developed in the future for the treatment of LIHC. |
---|