Cargando…
Prediction of protein–ligand binding affinity from sequencing data with interpretable machine learning
Protein–ligand interactions are increasingly profiled at high throughput using affinity selection and massively parallel sequencing. However, these assays do not provide the biophysical parameters that most rigorously quantify molecular interactions. Here we describe a flexible machine learning meth...
Autores principales: | Rube, H. Tomas, Rastogi, Chaitanya, Feng, Siqian, Kribelbauer, Judith F., Li, Allyson, Becerra, Basheer, Melo, Lucas A. N., Do, Bach Viet, Li, Xiaoting, Adam, Hammaad H., Shah, Neel H., Mann, Richard S., Bussemaker, Harmen J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546773/ https://www.ncbi.nlm.nih.gov/pubmed/35606422 http://dx.doi.org/10.1038/s41587-022-01307-0 |
Ejemplares similares
-
A unified approach for quantifying and interpreting DNA shape readout by transcription factors
por: Rube, H Tomas, et al.
Publicado: (2018) -
Accurate and sensitive quantification of protein-DNA binding affinity
por: Rastogi, Chaitanya, et al.
Publicado: (2018) -
Transcription factor paralogs orchestrate alternative gene regulatory networks by context-dependent cooperation with multiple cofactors
por: Feng, Siqian, et al.
Publicado: (2022) -
SelexGLM differentiates androgen and glucocorticoid receptor DNA-binding preference over an extended binding site
por: Zhang, Liyang, et al.
Publicado: (2018) -
Systematic in vitro profiling of off-target affinity, cleavage and efficiency for CRISPR enzymes
por: Zhang, Liyang, et al.
Publicado: (2020)