Cargando…
Multi-omics single-cell data integration and regulatory inference with graph-linked embedding
Despite the emergence of experimental methods for simultaneous measurement of multiple omics modalities in single cells, most single-cell datasets include only one modality. A major obstacle in integrating omics data from multiple modalities is that different omics layers typically have distinct fea...
Autores principales: | Cao, Zhi-Jie, Gao, Ge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546775/ https://www.ncbi.nlm.nih.gov/pubmed/35501393 http://dx.doi.org/10.1038/s41587-022-01284-4 |
Ejemplares similares
-
CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data
por: Zhao, Chen, et al.
Publicado: (2023) -
CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data
por: Zhao, Chen, et al.
Publicado: (2023) -
Integration of single-cell multi-omics for gene regulatory network inference
por: Hu, Xinlin, et al.
Publicado: (2020) -
GraphOmics: an interactive platform to explore and integrate multi-omics data
por: Wandy, Joe, et al.
Publicado: (2021) -
A universal framework for single-cell multi-omics data integration with graph convolutional networks
por: Gao, Hongli, et al.
Publicado: (2023)