Cargando…
An oversampling method for imbalanced data based on spatial distribution of minority samples SD-KMSMOTE
With the rapid expansion of data, the problem of data imbalance has become increasingly prominent in the fields of medical treatment, finance, network, etc. And it is typically solved using the oversampling method. However, most existing oversampling methods randomly sample or sample only for a part...
Autores principales: | Yang, Wensheng, Pan, Chengsheng, Zhang, Yanyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546831/ https://www.ncbi.nlm.nih.gov/pubmed/36207460 http://dx.doi.org/10.1038/s41598-022-21046-1 |
Ejemplares similares
-
Selective oversampling approach for strongly imbalanced data
por: Gnip, Peter, et al.
Publicado: (2021) -
An oversampling method for multi-class imbalanced data based on composite weights
por: Deng, Mingyang, et al.
Publicado: (2021) -
Iterative Nearest Neighborhood Oversampling in Semisupervised Learning from Imbalanced Data
por: Li, Fengqi, et al.
Publicado: (2013) -
Imbalanced classification for protein subcellular localization with multilabel oversampling
por: Rana, Priyanka, et al.
Publicado: (2022) -
Evolutionary Mahalanobis Distance-Based Oversampling for Multi-Class Imbalanced Data Classification
por: Yao, Leehter, et al.
Publicado: (2021)