Cargando…
Opposition-based sine cosine optimizer utilizing refraction learning and variable neighborhood search for feature selection
This paper proposes new improved binary versions of the Sine Cosine Algorithm (SCA) for the Feature Selection (FS) problem. FS is an essential machine learning and data mining task of choosing a subset of highly discriminating features from noisy, irrelevant, high-dimensional, and redundant features...
Autores principales: | Abed-alguni, Bilal H., Alawad, Noor Aldeen, Al-Betar, Mohammed Azmi, Paul, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547101/ https://www.ncbi.nlm.nih.gov/pubmed/36247211 http://dx.doi.org/10.1007/s10489-022-04201-z |
Ejemplares similares
-
Economic load dispatch using memetic sine cosine algorithm
por: Al-Betar, Mohammed Azmi, et al.
Publicado: (2022) -
A Modified Sine-Cosine Algorithm Based on Neighborhood Search and Greedy Levy Mutation
por: Qu, Chiwen, et al.
Publicado: (2018) -
An Enhanced Neural Network Algorithm with Quasi-Oppositional-Based and Chaotic Sine-Cosine Learning Strategies
por: Xiong, Xuan, et al.
Publicado: (2023) -
Tables of sine, cosine and exponential integrals
por: National Bureau of Standards. Washington, DC
Publicado: (1940) -
Tables of sines and cosines for radian arguments
por: National Bureau of Standards. Washington, DC
Publicado: (1955)